1
|
Wang J, Sadlak N, Fiorello MG, Desai M, Yi J. Macular Oxygen Saturation in Glaucoma Using Retinal Oximetry of Visible Light Optical Coherence Tomography: A Pilot Study. Transl Vis Sci Technol 2025; 14:12. [PMID: 39913123 PMCID: PMC11806434 DOI: 10.1167/tvst.14.2.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/24/2024] [Indexed: 02/07/2025] Open
Abstract
Purpose A cross-sectional pilot study to compare macular oxygen saturation (sO2) and associated clinical measurements between normal and glaucoma subjects and to evaluate whether macular sO2 can be a diagnostic metric for early-stage glaucoma. Methods Forty-eight eyes of 35 subjects from three groups were included: normal subjects (16 eyes, 10 subjects), suspect/pre-perimetric glaucoma (GS/PPG) subjects (17 eyes, 12 subjects), and perimetric glaucoma (PG) subjects (15 eyes, 13 subjects). We performed retinal oximetry of visible light optical coherence tomography (VIS-OCT) in macular vessels, with 512 × 256 sampling points over a 5 × 5 mm2 area. Zeiss Cirrus OCT scans and a 24-2 visual field test (VFT) were conducted. Statistical analysis was conducted. Results Significant differences were observed among the three groups for all VIS-OCT, Zeiss OCT, and VFT variables. As glaucoma severity increased, macular AsO2 (arterial sO2) and A-V sO2 (arteriovenous sO2 difference) decreased, whereas macular VsO2 (venous sO2) increased. Macular AsO2 and A-V sO2 were found to be statistically correlated with ganglion cell layer + inner plexiform layer (GCL+IPL) and circumpapillary retinal nerve fiber layer in all eyes, as well as in PG eyes. Within the PG group, a dominant correlation between AsO2 and ganglion cell layer + inner plexiform layer was observed in the more damaged lower hemifield. Conclusions Glaucoma subjects showed altered macular sO2, indicating reduced oxygen consumption. The sO2 measured by VIS-OCT could be a potential metric for early glaucoma diagnosis. Translational Relevance This study shows macular sO2 measurements via VIS-OCT could bridge advanced imaging technology and clinical glaucoma detection.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Ophthalmology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Natalie Sadlak
- Department of Ophthalmology, Boston Medical Center, Boston, MA, USA
| | | | - Manishi Desai
- Department of Ophthalmology, Boston Medical Center, Boston, MA, USA
| | - Ji Yi
- Department of Ophthalmology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Smith JD, Bisignano K, Harrison WW. Test-retest repeatability in macular retinal oximetry. Clin Exp Optom 2024; 107:616-621. [PMID: 37844335 PMCID: PMC11018714 DOI: 10.1080/08164622.2023.2261928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023] Open
Abstract
CLINICAL RELEVANCE Evaluation of retinal macular oxygen saturation in healthy controls can aid in understanding the pathological changes seen in similar locations of those with vascular diseases like diabetes. BACKGROUND The aim of this study was to determine the test-retest repeatability of localised retinal oximetry measurements in the macula on the Zilia Oximeter within healthy subjects of different races, 18-40 years old. Oxygen saturation was measured between three time points within the same locations of the right eye. METHODS Twenty seven subjects were included (aged 26.3 ± 3.6 years). All were confirmed to have healthy retinas and at least 6/9 vision. Oximetry measurements were taken using the Zilia to acquire local oxygen saturation measurements (300 µm diameter) at four points 3.1 degrees from the fovea in the superior/temporal, superior/nasal, inferior/temporal, and inferior/nasal locations. Oximetry measurements were taken twice on the same day 20 minutes apart and then again 1-2 weeks later. Oximetry data was analysed with intraclass correlation between visits. To assess intrasubject repeatability, the Bland-Altman repeatability coefficient and coefficient of variation were calculated. RESULTS Average Intraclass correlation for the three acquisition times of the right eye was 0.78. The averaged intrasubject repeatability coefficient for the three acquisition times was 8.4. The averaged coefficient of variation was 5.4%. CONCLUSION The Zilia oximeter has good macular test-retest repeatability; however, multiple measurements may be needed to ensure accuracy.
Collapse
Affiliation(s)
- Jennyffer D Smith
- Department of Optometry, University of Houston College of Optometry, Houston, TX, USA
| | - Kelly Bisignano
- Department of Optometry, University of Houston College of Optometry, Houston, TX, USA
| | - Wendy W Harrison
- Department of Optometry, University of Houston College of Optometry, Houston, TX, USA
| |
Collapse
|
3
|
Wang CY, Nguyen HT, Fan WS, Lue JH, Saenprasarn P, Chen MM, Huang SY, Lin FC, Wang HC. Glaucoma Detection through a Novel Hyperspectral Imaging Band Selection and Vision Transformer Integration. Diagnostics (Basel) 2024; 14:1285. [PMID: 38928700 PMCID: PMC11202918 DOI: 10.3390/diagnostics14121285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Conventional diagnostic methods for glaucoma primarily rely on non-dynamic fundus images and often analyze features such as the optic cup-to-disc ratio and abnormalities in specific retinal locations like the macula and fovea. However, hyperspectral imaging techniques focus on detecting alterations in oxygen saturation within retinal vessels, offering a potentially more comprehensive approach to diagnosis. This study explores the diagnostic potential of hyperspectral imaging for glaucoma by introducing a novel hyperspectral imaging conversion technique. Digital fundus images are transformed into hyperspectral representations, allowing for a detailed analysis of spectral variations. Spectral regions exhibiting differences are identified through spectral analysis, and images are reconstructed from these specific regions. The Vision Transformer (ViT) algorithm is then employed for classification and comparison across selected spectral bands. Fundus images are used to identify differences in lesions, utilizing a dataset of 1291 images. This study evaluates the classification performance of models using various spectral bands, revealing that the 610-780 nm band outperforms others with an accuracy, precision, recall, F1-score, and AUC-ROC all approximately at 0.9007, indicating its superior effectiveness for the task. The RGB model also shows strong performance, while other bands exhibit lower recall and overall metrics. This research highlights the disparities between machine learning algorithms and traditional clinical approaches in fundus image analysis. The findings suggest that hyperspectral imaging, coupled with advanced computational techniques such as the ViT algorithm, could significantly enhance glaucoma diagnosis. This understanding offers insights into the potential transformation of glaucoma diagnostics through the integration of hyperspectral imaging and innovative computational methodologies.
Collapse
Affiliation(s)
- Ching-Yu Wang
- Department of Ophthalmology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan; (C.-Y.W.); (W.-S.F.)
| | - Hong-Thai Nguyen
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan;
| | - Wen-Shuang Fan
- Department of Ophthalmology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan; (C.-Y.W.); (W.-S.F.)
| | - Jiann-Hwa Lue
- Department of Optometry, Central Taiwan University of Science and Technology, No. 666, Buzih Road, Taichung City 406053, Taiwan; (J.-H.L.); (S.-Y.H.)
| | - Penchun Saenprasarn
- School of Nursing, Shinawatra University, 99 Moo 10, Bangtoey, Samkhok, Pathum Thani 12160, Thailand;
| | - Meei-Maan Chen
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Rd., Min Hsiung, Chiayi 62102, Taiwan;
| | - Shuan-Yu Huang
- Department of Optometry, Central Taiwan University of Science and Technology, No. 666, Buzih Road, Taichung City 406053, Taiwan; (J.-H.L.); (S.-Y.H.)
| | - Fen-Chi Lin
- Department of Ophthalmology, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st. Rd., Kaohsiung City 80284, Taiwan
| | - Hsiang-Chen Wang
- Department of Optometry, Central Taiwan University of Science and Technology, No. 666, Buzih Road, Taichung City 406053, Taiwan; (J.-H.L.); (S.-Y.H.)
- Hitspectra Intelligent Technology Co., Ltd., Kaohsiung City 80661, Taiwan
| |
Collapse
|
4
|
Wang J, Sadlak N, Fiorello MG, Desai M, Yi J. Macular Oxygen Saturation in Glaucoma Using Retinal Oximetry of Visible Light Optical Coherence Tomography. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.20.23300300. [PMID: 38196641 PMCID: PMC10775404 DOI: 10.1101/2023.12.20.23300300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Purpose Oxygen saturation (sO2) plays a critical role in retinal pathophysiology, especially at the macula, which undergoes significant energy consumption. While macular damage has been suggested to be involved in early-stage glaucoma, there has been no report to date on non-invasive macular sO2 in glaucoma. Therefore, we conducted this study to compare macular sO2 associated with other clinical measurements between normal and glaucoma subjects and evaluate whether there are significant differences. Method This is a cross-sectional study. We used visible light optical coherence tomography (VIS-OCT) for retinal oximetry in perifoveal vessels. The subjects from groups of normal, suspect/pre-perimetric glaucoma (GS/PPG) and perimetric glaucoma (PG) were scanned using VIS-OCT in the macular region with a sampling density of 512×256 in an area of 5×5 mm2. 48 eyes (16 normal, 17 GS/PPG and 15 PG) were included for the analysis. For each eye, we measured the sO2 of arterioles (AsO2), venules (VsO2), and calculated the difference between arterioles and venules (A-V sO2=AsO2-VsO2), oxygen extraction (OE=(AsO2-VsO2)/AsO2 ×100%). Additionally, we included Zeiss Cirrus OCT scans and 24-2 visual field test (VFT) for clinical benchmark. One-way ANOVA was used to compare the differences among the three groups. Spearman correlation tests were used for correlation sO2 markers to standard metrics including the thickness of ganglion cell layer and inner plexiform layer (GCL+IPL), circumpapillary retinal nerve fiber layer (cpRNFL) and mean deviation (MD) in VFT. Result Significant differences were found among three groups for all VIS-OCT, Zeiss OCT, and VFT variables. Macular AsO2, A-V sO2, OE decreased, and VsO2 increased along with severity. Macular AsO2 and A-V sO2 were statistically correlated with GCL+IPL and cpRNFL in all eyes, as well as only PG eyes. Within PG eyes, the correlation between AsO2 and GCL+IPL is dominant in more damaged lower hemifield. Conclusion The GS/PPG and PG subjects had significantly higher macular VsO2, lower A-V sO2 and OE indicating less oxygen consumption. The sO2 measured by retinal oximetry of VIS-OCT can be a potential metric for the early diagnosis of glaucoma.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Ophthalmology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Natalie Sadlak
- Department of Ophthalmology, Boston Medical Center, Boston, MA, USA
| | | | - Manishi Desai
- Department of Ophthalmology, Boston Medical Center, Boston, MA, USA
| | - Ji Yi
- Department of Ophthalmology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
5
|
Retinal Oxygen Extraction in Patients with Primary Open-Angle Glaucoma. Int J Mol Sci 2022; 23:ijms231710152. [PMID: 36077550 PMCID: PMC9456494 DOI: 10.3390/ijms231710152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Objective: To compare total retinal oxygen extraction between patients with primary open-angle glaucoma (POAG) and healthy control subjects. Design: A prospective, single-center, cross-sectional, case−control study performed at the Medical University of Vienna. Subjects: Forty patients with POAG and 40 age- and sex-matched control subjects. Methods: Total retinal blood flow was measured using Doppler optical coherence tomography (OCT). Retinal arterial and venous oxygen saturation was measured using reflectance spectroscopy. From these parameters, oxygen content in the retinal arterial and venous circulation as well as total retinal oxygen extraction were calculated. Results: Total retinal blood flow was lower in POAG (25.2 ± 6.7 µL/min) as compared to healthy control subjects (35.6 ± 8.3 µL/min, p < 0.001). Retinal arterial oxygen content was not different between the two groups (0.18 ± 0.01 mL(O2)/mL in both groups, p < 0.761), but retinal venous oxygen content was higher in POAG (0.15 ± 0.01 mL(O2)/mL) than in healthy controls (0.14 ± 0.01 mL(O2)/mL p < 0.001). Accordingly, retinal oxygen extraction was reduced in POAG (0.8 ± 0.3 µL(O2)/min as compared to healthy controls: 1.4 ± 0.4 µL(O2)/min, p < 0.001). There was a significant association between total retinal blood flow and total retinal oxygen extraction with measures of structural and functional damage (p < 0.001 each). Conclusions: This study indicates that POAG is associated with a reduction in total retinal oxygen extraction linked to structural and functional damage of the disease. Since the technology is non-invasive, it allows for longitudinal studies investigating to which degree low retinal oxygen extraction is linked to the progression of the disease.
Collapse
|
6
|
Abstract
Similar to other organs, the retina relies on tightly regulated perfusion and oxygenation. Previous studies have demonstrated that retinal blood flow is affected in a variety of eye and systemic diseases, including diabetic retinopathy, age-related macular degeneration, and glaucoma. Although measurement of peripheral oxygen saturation has become a standard clinical measurement through the development of pulse oximetry, developing a noninvasive technique to measure retinal oxygen saturation has proven challenging, and retinal oximetry technology currently remains inadequate for reliable clinical use. Here, we review current strategies and approaches, as well as several newer technologies in development, and discuss the future of retinal oximetry.
Collapse
Affiliation(s)
- Anupam K Garg
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA.,School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Darren Knight
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA
| | - Leonardo Lando
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA
| | - Daniel L Chao
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA.,School of Medicine, University of California San Diego, La Jolla, CA, USA.,Janssen Research and Development, Raritan, NJ, USA
| |
Collapse
|
7
|
Shughoury A, Mathew S, Arciero J, Wurster P, Adjei S, Ciulla T, Siesky B, Harris A. Retinal oximetry in glaucoma: investigations and findings reviewed. Acta Ophthalmol 2020; 98:559-571. [PMID: 32248646 DOI: 10.1111/aos.14397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 02/20/2020] [Indexed: 12/17/2022]
Abstract
Abnormalities of the retinal blood supply have been widely implicated in primary open-angle glaucoma (POAG). Impaired blood supply to the retina and optic nerve head (ONH) may be a primary pathophysiologic mechanism contributing to POAG ('vascular hypothesis'). However, the decreased metabolic activity of atrophic tissue is itself known to induce both vascular changes and decreased blood flow due to reduced oxygen demand. Therefore, primary nonvascular factors could potentially induce glaucomatous atrophy, with subsequent secondary vascular pathology ('mechanical hypothesis'). Retinal oximetry holds great promise in the investigation of glaucoma pathogenesis, as it can provide useful data on retinal metabolic oxygen demand, especially when combined with measurements of retinal blood flow. This review surveys the research on retinal metabolism in POAG using spectroscopic retinal oximetry. The use of mathematical models in combination with oximetric data to investigate the role of retinal metabolism and oxygen supply in POAG is also discussed.
Collapse
Affiliation(s)
- Aumer Shughoury
- Eugene and Marilyn Glick Eye Institute Department of Ophthalmology Indiana University School of Medicine Indianapolis IN USA
| | - Sunu Mathew
- Eugene and Marilyn Glick Eye Institute Department of Ophthalmology Indiana University School of Medicine Indianapolis IN USA
| | - Julia Arciero
- Department of Mathematical Sciences Indiana University Purdue University Indianapolis IN USA
| | - Patrick Wurster
- Eugene and Marilyn Glick Eye Institute Department of Ophthalmology Indiana University School of Medicine Indianapolis IN USA
| | - Susuana Adjei
- Eugene and Marilyn Glick Eye Institute Department of Ophthalmology Indiana University School of Medicine Indianapolis IN USA
| | | | - Brent Siesky
- Icahn School of Medicine at Mount Sinai New York NY USA
| | - Alon Harris
- Icahn School of Medicine at Mount Sinai New York NY USA
| |
Collapse
|
8
|
Girard MJA, Schmetterer L. Artificial intelligence and deep learning in glaucoma: Current state and future prospects. PROGRESS IN BRAIN RESEARCH 2020; 257:37-64. [PMID: 32988472 DOI: 10.1016/bs.pbr.2020.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past few years, there has been an unprecedented and tremendous excitement for artificial intelligence (AI) research in the field of Ophthalmology; this has naturally been translated to glaucoma-a progressive optic neuropathy characterized by retinal ganglion cell axon loss and associated visual field defects. In this review, we aim to discuss how AI may have a unique opportunity to tackle the many challenges faced in the glaucoma clinic. This is because glaucoma remains poorly understood with difficulties in providing early diagnosis and prognosis accurately and in a timely fashion. In the short term, AI could also become a game changer by paving the way for the first cost-effective glaucoma screening campaigns. While there are undeniable technical and clinical challenges ahead, and more so than for other ophthalmic disorders whereby AI is already booming, we strongly believe that glaucoma specialists should embrace AI as a companion to their practice. Finally, this review will also remind ourselves that glaucoma is a complex group of disorders with a multitude of physiological manifestations that cannot yet be observed clinically. AI in glaucoma is here to stay, but it will not be the only tool to solve glaucoma.
Collapse
Affiliation(s)
- Michaël J A Girard
- Ophthalmic Engineering & Innovation Laboratory (OEIL), Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.
| | - Leopold Schmetterer
- Ocular Imaging, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore; Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; Institute of Clinical and Experimental Ophthalmology, Basel, Switzerland.
| |
Collapse
|
9
|
Lemmens S, Van Eijgen J, Van Keer K, Jacob J, Moylett S, De Groef L, Vancraenendonck T, De Boever P, Stalmans I. Hyperspectral Imaging and the Retina: Worth the Wave? Transl Vis Sci Technol 2020; 9:9. [PMID: 32879765 PMCID: PMC7442879 DOI: 10.1167/tvst.9.9.9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose Hyperspectral imaging is gaining attention in the biomedical field because it generates additional spectral information to study physiological and clinical processes. Several technologies have been described; however an independent, systematic literature overview is lacking, especially in the field of ophthalmology. This investigation is the first to systematically overview scientific literature specifically regarding retinal hyperspectral imaging. Methods A systematic literature review was conducted, in accordance with PRISMA Statement 2009 criteria, in four bibliographic databases: Medline, Embase, Cochrane Database of Systematic Reviews, and Web of Science. Results Fifty-six articles were found that meet the review criteria. A range of techniques was reported: Fourier analysis, liquid crystal tunable filters, tunable laser sources, dual-slit monochromators, dispersive prisms and gratings, computed tomography, fiber optics, and Fabry-Perrot cavity filter covered complementary metal oxide semiconductor. We present a narrative synthesis and summary tables of findings of the included articles, because methodologic heterogeneity and diverse research topics prevented a meta-analysis being conducted. Conclusions Application in ophthalmology is still in its infancy. Most previous experiments have been performed in the field of retinal oximetry, providing valuable information in the diagnosis and monitoring of various ocular diseases. To date, none of these applications have graduated to clinical practice owing to the lack of sufficiently large validation studies. Translational Relevance Given the promising results that smaller studies show for hyperspectral imaging (e.g., in Alzheimer's disease), advanced research in larger validation studies is warranted to determine its true clinical potential.
Collapse
Affiliation(s)
- Sophie Lemmens
- University Hospitals UZ Leuven, Department of Ophthalmology, Leuven, Belgium
- KU Leuven, Biomedical Sciences Group, Department of Neurosciences, Research Group Ophthalmology, Leuven, Belgium
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang, Belgium
| | - Jan Van Eijgen
- University Hospitals UZ Leuven, Department of Ophthalmology, Leuven, Belgium
- KU Leuven, Biomedical Sciences Group, Department of Neurosciences, Research Group Ophthalmology, Leuven, Belgium
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang, Belgium
| | - Karel Van Keer
- University Hospitals UZ Leuven, Department of Ophthalmology, Leuven, Belgium
- KU Leuven, Biomedical Sciences Group, Department of Neurosciences, Research Group Ophthalmology, Leuven, Belgium
| | - Julie Jacob
- University Hospitals UZ Leuven, Department of Ophthalmology, Leuven, Belgium
- KU Leuven, Biomedical Sciences Group, Department of Neurosciences, Research Group Ophthalmology, Leuven, Belgium
| | - Sinéad Moylett
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Toon Vancraenendonck
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang, Belgium
| | - Patrick De Boever
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang, Belgium
- Hasselt University, Centre of Environmental Sciences, Agoralaan, Belgium
| | - Ingeborg Stalmans
- University Hospitals UZ Leuven, Department of Ophthalmology, Leuven, Belgium
- KU Leuven, Biomedical Sciences Group, Department of Neurosciences, Research Group Ophthalmology, Leuven, Belgium
| |
Collapse
|
10
|
Aref AA, Maleki S, Tan O, Huang D, Varma R, Shahidi M. Relating glaucomatous visual field loss to retinal oxygen delivery and metabolism. Acta Ophthalmol 2019; 97:e968-e972. [PMID: 31016869 DOI: 10.1111/aos.14120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/28/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE To test the hypothesis that visual field (VF) loss is associated with decreased retinal blood flow, oxygen delivery and metabolism, and with increased retinal oxygen extraction fraction (OEF) in glaucomatous individuals. METHODS Glaucomatous subjects underwent automated perimetry, dual wavelength scanning laser ophthalmoscopy and Doppler optical coherence tomography imaging in order to measure mean deviation, central retinal arterial and venous diameter equivalents (CRAE and CRVE), oxygen saturation levels and total retinal blood flow (TRBF), respectively. Retinal oxygen delivery, metabolism and extraction fraction were derived from measurements of oxygen saturation and blood flow. RESULTS Twenty eyes of 14 subjects were included in the study. Mean deviation was on average -13.76 ± 8.70 dB. Mean CRAE and CRVE were 126 ± 28 and 191 ± 35 μm, respectively. Mean TRBF and oxygen delivery were 34.3 ± 11.7 μl/min and 6.5 ± 2.6 μl O2 /min, respectively. Mean oxygen metabolism and extraction fraction were 2.1 ± 0.94 μl O2 /min and 0.34 ± 0.15, respectively. Visual field (VF) loss was associated with reduced CRAE and CRVE, TRBF and oxygen delivery and associated with increased OEF. CONCLUSION Combined measurements of retinal blood flow and oxygen saturation in glaucomatous individuals suggest VF loss is associated with impaired oxygen delivery and augmented OEF.
Collapse
Affiliation(s)
- Ahmad A Aref
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago Chicago Illinois USA
| | - Shervin Maleki
- Department of Ophthalmology University of Southern California Los Angeles California USA
| | - Ou Tan
- Casey Eye Institute Oregon Health & Science University Portland Oregon USA
| | - David Huang
- Casey Eye Institute Oregon Health & Science University Portland Oregon USA
| | - Rohit Varma
- Department of Ophthalmology University of Southern California Los Angeles California USA
| | - Mahnaz Shahidi
- Department of Ophthalmology University of Southern California Los Angeles California USA
| |
Collapse
|
11
|
Hasan SM, Hammer M, Meller D. Correlation of the Retinal Parapapillary Perfusion and the Retinal Vessel Oxygen Saturation in Glaucoma Patients. ACTA ACUST UNITED AC 2019; 60:1309-1315. [DOI: 10.1167/iovs.18-26099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Somar M. Hasan
- Department of Ophthalmology, Jena University Hospital, Jena, Germany
| | - Martin Hammer
- Department of Ophthalmology, Jena University Hospital, Jena, Germany
| | - Daniel Meller
- Department of Ophthalmology, Jena University Hospital, Jena, Germany
| |
Collapse
|
12
|
Adams CM, Stacy R, Rangaswamy N, Bigelow C, Grosskreutz CL, Prasanna G. Glaucoma - Next Generation Therapeutics: Impossible to Possible. Pharm Res 2018; 36:25. [PMID: 30547244 DOI: 10.1007/s11095-018-2557-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/12/2018] [Indexed: 12/28/2022]
Abstract
The future of next generation therapeutics for glaucoma is strong. The recent approval of two novel intraocular pressure (IOP)-lowering drugs with distinct mechanisms of action is the first in over 20 years. However, these are still being administered as topical drops. Efforts are underway to increase patient compliance and greater therapeutic benefits with the development of sustained delivery technologies. Furthermore, innovations from biologics- and gene therapy-based therapeutics are being developed in the context of disease modification, which are expected to lead to more permanent therapies for patients. Neuroprotection, including the preservation of retinal ganglion cells (RGCs) and optic nerve is another area that is actively being explored for therapeutic options. With improvements in imaging technologies and determination of new surrogate clinical endpoints, the therapeutic potential for translation of neuroprotectants is coming close to clinical realization. This review summarizes the aforementioned topics and other related aspects.
Collapse
Affiliation(s)
- Christopher M Adams
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research (NIBR),, Cambridge, Massachusetts, USA
| | - Rebecca Stacy
- Translational Medicine, Ophthalmology, NIBR, Cambridge, Massachusetts, USA
| | - Nalini Rangaswamy
- Ophthalmology Research, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts, 02139, USA
| | - Chad Bigelow
- Ophthalmology Research, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts, 02139, USA
| | - Cynthia L Grosskreutz
- Ophthalmology Research, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts, 02139, USA
| | - Ganesh Prasanna
- Ophthalmology Research, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|
13
|
Rose K, Krema H, Durairaj P, Dangboon W, Chavez Y, Kulasekara SI, Hudson C. Retinal perfusion changes in radiation retinopathy. Acta Ophthalmol 2018; 96:e727-e731. [PMID: 29998553 DOI: 10.1111/aos.13797] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/24/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE To investigate retinal blood flow and oxygen saturation changes in patients diagnosed with retinopathy following plaque radiation treatment to treat choroidal melanoma. METHODS Eight patients (mean age 55.75 years, SD 12.58 years) who have developed unilateral ischaemic radiation-related retinopathy as confirmed by wide-field fluorescein angiography were recruited for the study. The fellow eye with no other ocular or retinal pathology was used as control. Both eyes underwent measurement of total retinal blood flow (TRBF) and retinal blood oxygen saturation using prototype methodologies of Doppler Spectral Domain Optical Coherence Tomography (OCT) and Hyperspectral Retinal Camera, respectively. RESULTS The average TRBF in the retinopathy eye was significantly lower compared to the fellow eye (33.48 ± 12.73 μl/min versus 50.37 ± 15.26 μl/min; p = 0.013). The arteriolar oxygen saturation (SaO2 ) and venular oxygen saturation (SvO2 ) were higher in the retinopathy eye compared to the fellow eye (101.11 ± 4.26%, versus 94.45 ± 5.79%; p = 0.008) and (62.96 ± 11.05% versus 51.24 ± 6.88%, p = 0.051), respectively. CONCLUSION The ionizing radiation seems to have an impact on the TRBF, SaO2 and SvO2 , clinically presenting similar to a rapidly developing diabetic retinopathy. The results show an altered retinal vascular physiology in patients with radiation-related retinopathy.
Collapse
Affiliation(s)
- Kalpana Rose
- School of Optometry and Vision Science; University of Waterloo; Waterloo Ontario Canada
- Department of Ophthalmology and Vision Sciences; Toronto Western Hospital; University of Toronto; Toronto Ontario Canada
| | - Hatem Krema
- Department of Ophthalmology and Vision Sciences; Toronto Western Hospital; University of Toronto; Toronto Ontario Canada
- Ocular Oncology Service; Princess Margaret Cancer Centre/University Health Network; Toronto Ontario Canada
| | - Priya Durairaj
- Ocular Oncology Service; Princess Margaret Cancer Centre/University Health Network; Toronto Ontario Canada
| | - Wantanee Dangboon
- Ocular Oncology Service; Princess Margaret Cancer Centre/University Health Network; Toronto Ontario Canada
| | - Yael Chavez
- Ocular Oncology Service; Princess Margaret Cancer Centre/University Health Network; Toronto Ontario Canada
| | - Susith I. Kulasekara
- Department of Ophthalmology; Royal Darwin Hospital; Darwin Northern Territory Australia
| | - Christopher Hudson
- School of Optometry and Vision Science; University of Waterloo; Waterloo Ontario Canada
- Department of Ophthalmology and Vision Sciences; Toronto Western Hospital; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
14
|
Weinreb RN, Liebmann JM, Cioffi GA, Goldberg I, Brandt JD, Johnson CA, Zangwill LM, Schneider S, Badger H, Bejanian M. Oral Memantine for the Treatment of Glaucoma: Design and Results of 2 Randomized, Placebo-Controlled, Phase 3 Studies. Ophthalmology 2018; 125:1874-1885. [PMID: 30082073 DOI: 10.1016/j.ophtha.2018.06.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/16/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022] Open
Abstract
PURPOSE To evaluate the effectiveness and safety of oral memantine as a potential neuroprotective agent in open-angle glaucoma (OAG) at risk for progression. DESIGN Two randomized, double-masked, placebo-controlled, parallel-group, multicenter, 48-month studies identically designed, initiated 1 year apart, and completed in 2006. Protocol amendments included a 1-year extension (first study) and change in primary endpoint and analysis (second study). PARTICIPANTS Patients (2298 total) with bilateral OAG; glaucomatous optic disc damage and visual field loss in 1 eye; glaucomatous optic disc damage and/or visual field loss in the contralateral eye (at screening), topically treated or untreated intraocular pressure (IOP) of 21 mmHg or less (at baseline); and at risk of glaucomatous progression (per prespecified criteria). METHODS Patients were randomized 3:2:2 to receive memantine 20 mg, memantine 10 mg, or placebo tablets daily. Glaucomatous progression was assessed in the intent-to-treat population by full-threshold standard automated perimetry (SAP), frequency doubling technology (FDT), and stereoscopic optic disc photographs, standardized by quality control assessment at centralized reading centers. Safety evaluations included adverse events (AEs), best-corrected visual acuity, biomicroscopy, IOP, and ophthalmoscopy. Efficacy data from each study were analyzed per protocol. Pooled analyses of efficacy and safety data were also performed. MAIN OUTCOME MEASURES The predefined primary efficacy measure was glaucomatous visual field progression, as measured by SAP. Additional efficacy measures included glaucomatous progression of visual field (FDT) and optic nerve damage (stereoscopic optic disc photographs). RESULTS The proportion of patients who completed the studies was similar among groups (80%-83%). Compared with placebo, daily treatment with memantine 10 mg or 20 mg for 48 months did not delay glaucomatous progression significantly in the individual studies and pooled analyses. The pooled risk reduction ratio (95% confidence interval) assessed by SAP was -0.13 (-0.40, 0.09) and -0.17 (-0.46, 0.07) for memantine 10 mg and 20 mg, respectively. Results were similar per FDT and stereoscopic optic disc photographs. The most common AEs leading to treatment discontinuations were dizziness, headache, fatigue, and nausea. CONCLUSIONS With technologies available when the studies were conducted, daily treatment with memantine over 48 months was not shown to prevent glaucomatous progression in this patient population.
Collapse
Affiliation(s)
- Robert N Weinreb
- Hamilton Glaucoma Center, Shiley Eye Institute and Department of Ophthalmology, University of California San Diego, La Jolla, California.
| | - Jeffrey M Liebmann
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, New York
| | - George A Cioffi
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, New York
| | - Ivan Goldberg
- Discipline of Ophthalmology, University of Sydney and Sydney Eye Hospital, Sydney, Australia
| | - James D Brandt
- UC Davis Eye Center, University of California, Davis, Sacramento, California
| | - Chris A Johnson
- Department of Ophthalmology, University of Iowa, Iowa City, Iowa
| | - Linda M Zangwill
- Hamilton Glaucoma Center, Shiley Eye Institute and Department of Ophthalmology, University of California San Diego, La Jolla, California
| | | | | | | |
Collapse
|