1
|
Zhang JH, Wang MJ, Tan YT, Luo J, Wang SC. A bibliometric analysis of apoptosis in glaucoma. Front Neurosci 2023; 17:1105158. [PMID: 36814788 PMCID: PMC9939748 DOI: 10.3389/fnins.2023.1105158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Glaucoma is the first irreversible and second blindness disease, which is characterized by the death of retinal ganglion cells (RGCs) and degeneration of the optic nerve. Previous works have indicated that apoptosis is the main reason for RGC death in glaucoma. Although many studies have investigated the mechanism of apoptosis and different strategies targeting apoptosis to protect the RGCs and finally recover the impaired vision in the glaucoma. However, the global trend and hotspots of apoptosis in glaucoma have not been well illustrated and discussed. METHODS Documents were extracted from the Web of Science Core Collection on November 2, 2022. We selected articles and reviews published in English from January 1, 1999 to November 1, 2022 to perform visual analysis and statistical analysis of countries, institutions, authors, references and keywords by VOSviewer 1.6.18 and CiteSpace 5.8. RESULTS The publications about apoptosis in glaucoma show an increasing trend over time. Besides, the authors, institutions in the US and China published the most numbers of articles with the highest citation, which may be leading the research in the field of apoptosis in glaucoma. Last, series of advanced research results, technology and treatment for glaucoma, such as the discovery of key regulatory mechanisms on RGC apoptosis are emerging and will provide precise strategies for the treatment of glaucoma. CONCLUSION This research will broaden our comprehension about the role of apoptosis in the process of glaucoma, and provide guidelines for us in basic research and disease treatment in the further.
Collapse
Affiliation(s)
- Jia-Heng Zhang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Medicine 5-Year Program, 19 Grade, Xiangya School of Medicine, Central South University, Changsha, China
| | - Mei-Juan Wang
- Medical Imaging Center, Qingdao West Coast New District People's Hospital, Qingdao, Shandong, China
| | - Ya-Ting Tan
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Jia Luo
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Shu-Chao Wang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
2
|
Hu T, Meng S, Zhang Q, Song S, Tan C, Huang J, Chen D. Astrocyte derived TSP2 contributes to synaptic alteration and visual dysfunction in retinal ischemia/reperfusion injury. Cell Biosci 2022; 12:196. [PMID: 36471420 PMCID: PMC9720934 DOI: 10.1186/s13578-022-00932-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite current intervention measures/therapies are able to ameliorate neuronal death following retinal injuries/diseases, the recovery of visual function remains unsatisfactory. Previous studies revealed that the retinal synapse and neurite changed during the early stage after retinopathy, which was considered to be detrimental to visual signal transmission. However, the specific profiles and the mechanisms underlying retinal neurite and synaptic alteration after retinal pathologies remain poorly understood. METHODS Here, we revealed the spatiotemporal pattern of neurite and synaptic alteration following retinal pathologies using a rat model of acute RI/R induced by high intraocular pressure (HIOP) with Western blotting, Immunofluorescence, and electron microscopy. We further explored the potential role of activated astrocytes and their derived thrombospondin 2 (TSP2) in RI/R induced retinal neurite and synaptic alteration and visual dysfunction through viral transduction and drug injection. RESULTS We found a defasciculation of RGC axons, a compensatory increase of presynaptic proteins (synaptophysin and synapsin 1) and synaptic vesicles between bipolar cells and ganglion cells in the inner plexiform layer (IPL), and the degenerated visual function preceded the neuronal death in rat retinae. These events were accompanied by the activation of astrocytes. Furthermore, we showed that suppressing the activation of astrocytes (intravitreal injection of fluorocitric acid, FC), TSP2 knockdown (TSP2 shRNA-AAV transduction), and competitively inhibiting the binding of TSP2 and α2δ1 (intraperitoneal injection of gabapentin, GBP) effectively alleviated the retinal synaptic and neurite alteration and the visual dysfunction following RI/R injury. CONCLUSIONS (1) At the early stage following RI/R injury, the rat retinae develop a degeneration of ganglion cell axons and the resulting compensatory synaptic remodeling between bipolar cells and ganglion cells in IPL. These changes occur earlier than the massive loss of neurons in the ganglion cell layer (GCL). (2) Activated astrocytes may secret TSP2, which bind to α2δ1, to mediate the degeneration of rat retinal ganglion cell axons, compensatory synaptic remodeling in IPL, and visual dysfunction following RI/R injury.
Collapse
Affiliation(s)
- Tu Hu
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan People’s Republic of China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan People’s Republic of China
| | - Shuhan Meng
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan People’s Republic of China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan People’s Republic of China
| | - Qianyue Zhang
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan People’s Republic of China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan People’s Republic of China ,grid.216417.70000 0001 0379 7164Xiangya School of Medicine, Central South University, No. 172 Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Shuang Song
- grid.216417.70000 0001 0379 7164XiangYa School of Public Health, Central South University, No.238 Xiangya Road, Changsha, 410078 Hunan People’s Republic of China
| | - Cheng Tan
- grid.216417.70000 0001 0379 7164Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, No. 172 Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Jufang Huang
- grid.216417.70000 0001 0379 7164Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, No. 172 Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan People’s Republic of China
| | - Dan Chen
- grid.216417.70000 0001 0379 7164Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, No. 172 Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan People’s Republic of China
| |
Collapse
|
3
|
Lu P, Shi Y, Ye D, Lu X, Tang X, Cheng L, Xu Y, Huang J. Intravitreal Injection of PACAP Attenuates Acute Ocular Hypertension-Induced Retinal Injury Via Anti-Apoptosis and Anti-Inflammation in Mice. Invest Ophthalmol Vis Sci 2022; 63:18. [PMID: 35293951 PMCID: PMC8944396 DOI: 10.1167/iovs.63.3.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose Pituitary adenylate cyclase-activating polypeptide (PACAP) has shown potent neuroprotective effects in central nervous system and retina disorders. However, whether PACAP can attenuate retinal neurodegeneration induced by acute ocular hypertension (AOH) and the underlying mechanisms remain unknown. In this study, we aimed to investigate the effects of PACAP on the survival and function of retinal ganglion cells (RGCs), apoptosis, and inflammation in a mouse model of AOH injury. Methods PACAP was injected into the vitreous body immediately after inducing AOH injury. Hematoxylin and eosin staining and optical coherence tomography were used to evaluate the loss of retina tissue. Pattern electroretinogram was used to evaluate the function of RGCs. TUNEL assay was used to detect apoptosis. Immunofluorescence and western blot were employed to evaluate protein expression levels. Results PACAP treatment significantly reduced the losses of whole retina and inner retina thicknesses, Tuj1-positive RGCs, and the amplitudes of pattern electroretinograms induced by AOH injury. Additionally, PACAP treatment remarkably reduced the number of TUNEL-positive cells and inhibited the upregulation of Bim, Bax, and cleaved caspase-3 and downregulation of Bcl-xL after AOH injury. Moreover, PACAP markedly inhibited retinal reactive gliosis and vascular inflammation, as demonstrated by the downregulation of GFAP, Iba1, CD68, and CD45 in PACAP-treated mice. Furthermore, upregulated expression of NF-κB and phosphorylated NF-κB induced by AOH injury was attenuated by PACAP treatment. Conclusions PACAP could prevent the loss of retinal tissue and improve the survival and function of RGCs. The neuroprotective effect of PACAP is probably associated with its potent anti-apoptotic and anti-inflammatory effects.
Collapse
Affiliation(s)
- Peng Lu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuxun Shi
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dan Ye
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xi Lu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyu Tang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lu Cheng
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Xu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingjing Huang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
4
|
Age of Rats Affects the Degree of Retinal Neuroinflammatory Response Induced by High Acute Intraocular Pressure. DISEASE MARKERS 2022; 2022:9404977. [PMID: 35132339 PMCID: PMC8817888 DOI: 10.1155/2022/9404977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/08/2022] [Indexed: 12/16/2022]
Abstract
Purpose To investigate whether retinal neuroinflammatory response was affected by aging in a rat model of acute glaucoma. Methods Young adult and aged rats were randomly assigned into normal control, 45 mmHg, 60 mmHg, and 90 mmHg groups. Intraocular pressure (IOP) of rats was acutely elevated to 45 mmHg, 60 mmHg, and 90 mmHg, respectively. Three days after high IOP treatment, loss of retinal ganglion cells (RGCs), formation of proinflammatory microglia/macrophages and neurotoxic astrocytes, and deposition of complement C3 in the retina were detected by immunofluorescence. ELISA was used to assess the protein levels of proinflammatory cytokines TNF and IL-1β in the retina. Results Compared with young adult retinae, (1) loss of RGCs was more severe in aged retinae under the same IOP treatment, (2) microglia/macrophages were more prone to adopt proinflammatory phenotype in aged retinae in response to elevated IOP, (3) high IOP treatment induced astrogliosis, formation of neurotoxic astrocytes, and deposition of complement C3 more easily in aged retinae, and (4) aged retinae induced higher levels of proinflammatory cytokines TNF and IL-1β under the same IOP treatment. Conclusion Our data indicated that aging affects the degree of retinal neuroinflammatory response initiated by ocular hypertension, which may contribute to the age-related susceptibility of RGCs to elevated IOP.
Collapse
|
5
|
Ocular TGF- β, Matrix Metalloproteinases, and TIMP-1 Increase with the Development and Progression of Diabetic Retinopathy in Type 2 Diabetes Mellitus. Mediators Inflamm 2021; 2021:9811361. [PMID: 34257518 PMCID: PMC8257377 DOI: 10.1155/2021/9811361] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/04/2021] [Indexed: 01/20/2023] Open
Abstract
Diabetic retinopathy (DR) is a sight-threatening late complication of diabetes mellitus (DM). Even though its pathophysiology has not been fully elucidated, several studies suggested a role for transforming growth factor- (TGF-) β, matrix metalloproteinases (MMPs), and tissue inhibitors of matrix metalloproteinase (TIMP) in the onset and progression of the disease. Consequently, the aim of this study was to analyze the concentrations of TGF-β1, TGF-β2, TGF-β3, MMP-3, MMP-9, and TIMP-1 in patients with different stages of DR in order to identify stage-specific changes in their concentrations during the progression of the disease. Serum and aqueous humor (AH) samples were collected during intraocular surgery, and eyes were classified into the following groups: healthy controls (n = 17), diabetic patients with non-apparent DR (n = 23), mild/moderate nonproliferative DR (NPDR) (n = 13), and advanced NPDR/proliferative DR (PDR) without vitreal hemorrhage (n = 14). None of the patients had been under anti-VEGF or laser treatment within six months prior to surgery. In the AH, TGF-β1 levels increased in advanced NPDR/PDR by a factor of 5.5 compared to the control group. Similarly, an increase in MMP-3 and TIMP-1 levels in the AH was evident in the later stages of DR, corresponding to a 7.7- and 2.4-fold increase compared to the control group, respectively, whereas serum levels of the studied proteins remained similar. In conclusion, increased concentrations of TGF-β1, MMP-3, and TIMP-1 in the AH, but not in the serum, in advanced NPDR/PDR indicate that the intraocular regulation for these cytokines is independent of the systemic one and suggest their involvement in the progression of DR.
Collapse
|
6
|
Wallner C, Drysch M, Becerikli M, Schmidt SV, Hahn S, Wagner JM, Reinkemeier F, Dadras M, Sogorski A, von Glinski M, Lehnhardt M, Behr B. Deficiency of myostatin protects skeletal muscle cells from ischemia reperfusion injury. Sci Rep 2021; 11:12572. [PMID: 34131275 PMCID: PMC8206371 DOI: 10.1038/s41598-021-92159-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
Ischemia reperfusion (IR) injury plays a pivotal role in many diseases and leads to collateral damage during surgical interventions. While most studies focus on alleviating its severity in the context of brain, liver, kidney, and cardiac tissue, research as regards to skeletal muscle has not been conducted to the same extent. In the past, myostatin (MSTN), primarily known for supressing muscle growth, has been implicated in inflammatory circuits, and research provided promising results for cardiac IR injury mitigation by inhibiting MSTN cell surface receptor ACVR2B. This generated the question if interrupting MSTN signaling could temper IR injury in skeletal muscle. Examining human specimens from free myocutaneous flap transfer demonstrated increased MSTN signaling and tissue damage in terms of apoptotic activity, cell death, tissue edema, and lipid peroxidation. In subsequent in vivo MstnLn/Ln IR injury models, we identified potential mechanisms linking MSTN deficiency to protective effects, among others, inhibition of p38 MAPK signaling and SERCA2a modulation. Furthermore, transcriptional profiling revealed a putative involvement of NK cells. Collectively, this work establishes a protective role of MSTN deficiency in skeletal muscle IR injury.
Collapse
Affiliation(s)
- Christoph Wallner
- grid.412471.50000 0004 0551 2937Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Marius Drysch
- grid.412471.50000 0004 0551 2937Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Mustafa Becerikli
- grid.412471.50000 0004 0551 2937Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Sonja Verena Schmidt
- grid.412471.50000 0004 0551 2937Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Stephan Hahn
- grid.5570.70000 0004 0490 981XDepartment of Molecular Gastrointestinal Oncology, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Johannes Maximilian Wagner
- grid.412471.50000 0004 0551 2937Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Felix Reinkemeier
- grid.412471.50000 0004 0551 2937Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Mehran Dadras
- grid.412471.50000 0004 0551 2937Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Alexander Sogorski
- grid.412471.50000 0004 0551 2937Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Maxi von Glinski
- grid.412471.50000 0004 0551 2937Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Marcus Lehnhardt
- grid.412471.50000 0004 0551 2937Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Björn Behr
- grid.412471.50000 0004 0551 2937Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| |
Collapse
|