1
|
Zhou Y, Zhao T. Klotho relieves H 2O 2-induced lens epithelial cell damage via suppression of NOX4. Int Ophthalmol 2024; 44:417. [PMID: 39520585 DOI: 10.1007/s10792-024-03341-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Age-related cataract (ARC) is a common eye disease and represents a common contributing factor to visual damage and loss. Klotho is a longevity gene and has been reported to participate in aging-related disorders. This work aims to investigate the potential role of klotho in ARC. METHODS In human lens epithelial cells (HLECs) induced by varying concentrations of hydrogen peroxide (H2O2), CCK-8 assay was used to detect cell viability. DCFH-DA probe was used to detect reactive oxygen species (ROS) level. Western blot was used to detect klotho expression. JC-1 fluorochrome assay was used to detect mitochondrial membrane potential (MMP). The concentrations of oxidative stress markers malondialdehyde (MDA) and superoxide dismutase (SOD) were detected by related assay kits. Flow cytometry analysis, immunofluorescence staining and western blot were used to detect cell apoptosis. SA-β-gal staining and western blot were used to detect cell senescence. RESULTS Klotho expression was decreased in HLECs induced by increasing concentrations of H2O2. Overexpression of klotho significantly inhibited ROS generation, decreased MDA content, increased SOD content, promoted cell viability and suppressed cell apoptosis and senescence in H2O2-induced HLECs. Furthermore, klotho down-regulated NOX4 expression and NOX4 elevation partially reversed the effects of klotho on H2O2-induced HLECs. CONCLUSIONS To sum up, klotho may down-regulate NOX4 to protect against H2O2-induced HLECs damage. This finding suggested the potential therapeutic use of klotho in ARC, which needs further investigation.
Collapse
Affiliation(s)
- Yiling Zhou
- Department of Fundus Disease, Shenzhen Huaxia Eye Hospital, Lianhua Road 2032-1, Shenzhen, 518000, China
| | - Tieying Zhao
- Department of Fundus Disease, Shenzhen Huaxia Eye Hospital, Lianhua Road 2032-1, Shenzhen, 518000, China.
| |
Collapse
|
2
|
Oner C, Dogan B, Tuzun S, Ekinci A, Feyizoglu G, Basok BI. Serum α-Klotho and fibroblast growth factor 23 levels are not associated with non-proliferative diabetic retinopathy in type 1 diabetes mellitus. Sci Rep 2024; 14:4054. [PMID: 38374169 PMCID: PMC10876523 DOI: 10.1038/s41598-024-54788-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/16/2024] [Indexed: 02/21/2024] Open
Abstract
Diabetic retinopathy is a commonly observed cause of blindness and is a common problem in individuals with diabetes. Recent investigations have showed the capability of serum α-Klotho and FGF 23 in mitigating the effects of diabetic retinopathy. This study aimed to discover the correlation between FGF 23, α-Klotho, and diabetic retinopathy in type 1 diabetics. This case-control study included 63 diabetic patients and 66 healthy controls. Following an overnight duration of fasting, morning blood samples were taken from both the patient and the control groups. The serum concentrations of α-Klotho and FGF 23 were quantified. An experienced ophthalmologist inspected the retinopathy. All participants in this study have moderate non-proliferative retinopathy. A p value under 0.05 was considered statistically significant. The mean α-Klotho level for retinopathic diabetic patients was 501.7 ± 172.2 pg/mL and 579.6 ± 312.1 pg/mL for non-retinopathic diabetic patients. In comparison, α-Klotho level of the control group was 523.2 ± 265.4 pg/mL (p = 0.531). The mean of FGF 23 level did not demonstrate a significant difference (p = 0.259). The mean FGF 23 level were 75.7 ± 14.0 pg/mL, 74.0 ± 14.8 pg/mL and 79.3 ± 14.4 pg/mL in groups, respectively. In conclusion, there was no significant difference in FGF 23 and α-Klotho levels between type 1 diabetics with and without retinopathy when compared to the control group.
Collapse
Affiliation(s)
- Can Oner
- Department of Family Medicine, Health Sciences University Kartal Dr Lutfi Kirdar City Hospital, Istanbul, Turkey.
| | - Burcu Dogan
- Department of Family Medicine, Health Sciences University Gulhane Training and Research Hospital, Ankara, Turkey
| | - Sabah Tuzun
- Department of Family Medicine, Health Sciences University Haseki Sultangazi Training and Research Hospital, Istanbul, Turkey
| | - Asiye Ekinci
- Department of Ophtalmology, Health Sciences University Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Gunes Feyizoglu
- Department of Internal Medicine, Goztepe Prof Dr Suleyman Yalcın City Hospital, Istanbul, Turkey
| | - Banu Isbilen Basok
- Department of Medical Biochemistry, Health Sciences University Tepecik Training and Research Hospital, Izmir, Turkey
| |
Collapse
|
3
|
Guo Z, Ma X, Zhang RX, Yan H. Oxidative stress, epigenetic regulation and pathological processes of lens epithelial cells underlying diabetic cataract. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2023; 3:180-186. [PMID: 38106550 PMCID: PMC10724013 DOI: 10.1016/j.aopr.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/11/2023] [Accepted: 10/04/2023] [Indexed: 12/19/2023]
Abstract
Background Cataract is a blinding disease worldwide. It is an age-related disease that mainly occurs in people over 65 years old. Cataract is also prevalent in patients with diabetes mellites (DM). The pathological mechanisms underlying diabetic cataract (DC) are more complex than that of age-related cataract. Studies have identified that polyol pathway, advanced glycation end products (AGEs) and oxidative stress are the primary pathogenesis of DC. In recent years, molecular-level regulations and pathological processes of lens epithelial cells (LECs) have been confirmed to play roles in the initiation and progression of DC. A comprehensive understanding and elucidation of how chronic hyperglycemia drives molecular-level regulations and cytopathological processes in the lens will shed lights on the prevention, delay and treatment of DC. Main text Excessive glucose in the lens enhances polyol pathway and AGEs formation. Polyol pathway causes imbalance in the ratio of NADPH/NADP+ and NADH/NAD+. Decrease in NADPH/NADP+ ratio compromises antioxidant enzymes, while increase in NADH/NAD+ ratio promotes reactive oxygen species (ROS) overproduction in mitochondria, resulting in oxidative stress. Oxidative stress in the lens causes oxidation of DNA, proteins and lipids, leading to abnormalities in their structure and functions. Glycation of proteins by AGEs decreases solubility of proteins. High glucose triggered epigenetic regulations directly or indirectly affect expressions of genes and proteins in LECs. Changes in autophagic activity, increases in fibrosis and apoptosis of LECs destroy the morphological structure and physiological functions of the lens epithelium, disrupting lens homeostasis. Conclusions In both diabetic animal models and diabetics, oxidative stress plays crucial roles in the formation of cataract. Epigenetic regulations, include lncRNA, circRNA, microRNA, methylation of RNA and DNA, histone acetylation and pathological processes, include autophagy, fibrosis and apoptosis of LECs also involved in DC.
Collapse
Affiliation(s)
- Zaoxia Guo
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Xiaopan Ma
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Rui Xue Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Hong Yan
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Zhai W, Zhang T, Jin Y, Huang S, Xu M, Pan J. The fibroblast growth factor system in cognitive disorders and dementia. Front Neurosci 2023; 17:1136266. [PMID: 37214403 PMCID: PMC10196031 DOI: 10.3389/fnins.2023.1136266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Cognitive impairment is the core precursor to dementia and other cognitive disorders. Current hypotheses suggest that they share a common pathological basis, such as inflammation, restricted neurogenesis, neuroendocrine disorders, and the destruction of neurovascular units. Fibroblast growth factors (FGFs) are cell growth factors that play essential roles in various pathophysiological processes via paracrine or autocrine pathways. This system consists of FGFs and their receptors (FGFRs), which may hold tremendous potential to become a new biological marker in the diagnosis of dementia and other cognitive disorders, and serve as a potential target for drug development against dementia and cognitive function impairment. Here, we review the available evidence detailing the relevant pathways mediated by multiple FGFs and FGFRs, and recent studies examining their role in the pathogenesis and treatment of cognitive disorders and dementia.
Collapse
|
5
|
Tang A, Zhang Y, Wu L, Lin Y, Lv L, Zhao L, Xu B, Huang Y, Li M. Klotho's impact on diabetic nephropathy and its emerging connection to diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1180169. [PMID: 37143722 PMCID: PMC10151763 DOI: 10.3389/fendo.2023.1180169] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease worldwide and is a significant burden on healthcare systems. α-klotho (klotho) is a protein known for its anti-aging properties and has been shown to delay the onset of age-related diseases. Soluble klotho is produced by cleavage of the full-length transmembrane protein by a disintegrin and metalloproteases, and it exerts various physiological effects by circulating throughout the body. In type 2 diabetes and its complications DN, a significant decrease in klotho expression has been observed. This reduction in klotho levels may indicate the progression of DN and suggest that klotho may be involved in multiple pathological mechanisms that contribute to the onset and development of DN. This article examines the potential of soluble klotho as a therapeutic agent for DN, with a focus on its ability to impact multiple pathways. These pathways include anti-inflammatory and oxidative stress, anti-fibrotic, endothelial protection, prevention of vascular calcification, regulation of metabolism, maintenance of calcium and phosphate homeostasis, and regulation of cell fate through modulation of autophagy, apoptosis, and pyroptosis pathways. Diabetic retinopathy shares similar pathological mechanisms with DN, and targeting klotho may offer new insights into the prevention and treatment of both conditions. Finally, this review assesses the potential of various drugs used in clinical practice to modulate klotho levels through different mechanisms and their potential to improve DN by impacting klotho levels.
Collapse
Affiliation(s)
- Anqi Tang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Yu Zhang
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Ling Wu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Yong Lin
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Lizeyu Lv
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Liangbin Zhao
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Bojun Xu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Youqun Huang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Mingquan Li
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
- *Correspondence: Mingquan Li,
| |
Collapse
|
6
|
Liu Q, Li S, Yu L, Yin X, Liu X, Ye J, Lu G. CCL5 Suppresses Klotho Expression via p-STAT3/DNA Methyltransferase1-Mediated Promoter Hypermethylation. Front Physiol 2022; 13:856088. [PMID: 35299661 PMCID: PMC8922032 DOI: 10.3389/fphys.2022.856088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/09/2022] [Indexed: 01/19/2023] Open
Abstract
Background Enhanced inflammation and reduced Klotho are common features in chronic kidney disease (CKD). Inflammation induces DNA hypermethylation. This study assessed the performance of inflammatory marker C-C motif chemokine 5 (CCL5) in epigenetic regulation of Klotho expression. Methods Fifty CKD patients and 25 matched controls were enrolled, and serum CCL5 level, sKlotho level, and DNA methylation were evaluated in these subjects. A renal interstitial fibrosis (RIF) model with CKD was induced in mice via unilateral ureteral obstruction (UUO) in vivo and human proximal tubular epithelial (HK-2) cells treated with CCL5 in vitro. 5-aza-2′-deoxycytidine (5-Aza), a DNA methyltransferase inhibitor was given to UUO mice. Hematoxylin and eosin (HE) and Masson trichrome staining were adopted to evaluate renal pathological changes. Methylation-specific PCR was performed to assess DNA methylation of Klotho promoter in the peripheral blood leucocytes (PBLs) from CKD patients and obstructive kidney from UUO mice. CCL5, Klotho, and DNA methyltransferases (DNMTs) were determined by ELISAs, immunofluorescence, or western blotting. HK-2 cells were exposed to CCL5 with or without 5-Aza and stattic, a p-signal transducer and activator of transcription 3 (STAT3) inhibitor, and expressions of p-STAT3, DNMT1, and Klotho were determined by western blotting. Results CCL5 upregulation concomitant with Klotho downregulation in serum and global DNA methylation in PBLs were observed in CKD samples. UUO contributed to severe renal interstitial fibrosis and enhanced expressions of fibrotic markers. Moreover, UUO increased the CCL5 level, induced Klotho promoter methylation, suppressed Klotho level, activated p-STAT3 signaling, and upregulated DNMT1 level. A similar observation was made in HK-2 cells treated with CCL5. More importantly, 5-Aza inhibited UUO-induced Klotho hypermethylation, reversed Klotho, downregulated p-STAT3 expressions, and ameliorated RIF in vivo. The consistent findings in vitro were also obtained in HK-2 cells exposed to 5-Aza and stattic. Conclusion The CCL5/p-STAT3/DNMT1 axis is implicated in epigenetic regulation of Klotho expression in CKD. This study provides novel therapeutic possibilities for reversal of Klotho suppression by CKD.
Collapse
Affiliation(s)
- QiFeng Liu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - ShaSha Li
- Clinical Research & Lab Centre, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - LiXia Yu
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - XiaoYa Yin
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Xi Liu
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - JianMing Ye
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - GuoYuan Lu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Tokuc EO, Yuksel N, Kır HM, Acar E. Evaluation of serum and aqueous humor klotho levels in pseudoexfoliation syndrome, pseudoexfoliation and primary open-angle glaucoma. Int Ophthalmol 2021; 41:2369-2375. [PMID: 33738657 DOI: 10.1007/s10792-021-01790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The aim of our study was to compare klotho in the serum and aqueous humor of patients with primary open-angle glaucoma (POAG), pseudoexfoliation glaucoma (PEXG) and pseudoexfoliation syndrome (PEX). MATERIALS AND METHODS 18 POAG, 20 PEXG, 19 PEX and 20 control patients were included in our study. Aqueous humor and serum samples were collected at the time of cataract surgery. Samples were collected using enzyme-linked immunosorbent assay to evaluate the levels of Klotho protein. RESULTS Klotho levels in the serum and aqueous humor of PEXG patients (34.45 ± 3.59, 0.20 ± 0.15 ng/ml), PEX (35.85 ± 4.26, 0.23 ± 0.20 ng/ml) patients and POAG patients (35.99 ± 3.73, 0.25 ± 0.20 ng/ml) were significantly lower than control group (40.14 ± 3.85, 0.53 ± 0.39 ng/ml) (PEXG, P < 0.001, P < 0.001; PEX, P = 0.002, P = 0.003; POAG, P = 0.006, P = 0.003, respectively). Both serum and aqueous levels of klotho in the PEXG and PEX patients were lower than POAG patients, but the difference did not reach statistical significance (PEXG & POAG P = 0.149, P = 0.696), (PEX & POAG P = 0.845, P = 0.775). CONCLUSION Klotho levels in the serum and aqueous humor decreased in PEX, PEXG and POAG groups compared to control group, but the reduction was most significant in PEXG group.
Collapse
Affiliation(s)
- Ecem Onder Tokuc
- Department of Ophthalmology, University of Health Sciences, Derince Training and Research Hospital, Derince, Kocaeli, Turkey.
| | - Nursen Yuksel
- Department of Ophthalmology, Kocaeli University School of Medicine, İzmit, Kocaeli, Turkey
| | - Hale Maral Kır
- Department of Biochemistry, Kocaeli University School of Medicine, İzmit, Kocaeli, Turkey
| | - Esra Acar
- Department of Biochemistry, Kocaeli University School of Medicine, İzmit, Kocaeli, Turkey
| |
Collapse
|