1
|
Zhang Y, Hu Y, Su D, Fu Y, Chen X, Zhang X, Zheng S, Ma X, Hu S. Downregulation of RORl via STAT3 and P300 Promotes P38 Pathway- Dependent Lens Epithelial Cells Apoptosis in Age-Related Cataract. Biochem Genet 2025:10.1007/s10528-025-11067-6. [PMID: 40019609 DOI: 10.1007/s10528-025-11067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
Lens Epithelial Cells (LECs) apoptosis is a critical driving factor of age-related cataract (ARC), but the specific molecular mechanisms remain undefined. Herein, a novel target of ROR1 regulation was identified, the mechanism was elucidated by which ROR1 and its associated pathway proteins influence hydrogen peroxide (H2O2)-induced apoptosis of LECs in ARC. We found decreased ROR1 expression in human cataract lens capsules compared to normal ones, the trend was also observed in young and old mice. Experiments including CCK8, Hoechst 33,342 staining, and Western blot analysis confirmed that reduced ROR1 levels were linked to H2O2-induced apoptosis in HLEB3 cells. To investigate its effects on cell viability and apoptosis, we created a ROR1 interference plasmid and an overexpression plasmid. The overexpression of ROR1 effectively inhibited H2O2-induced apoptosis of HLEB3 cells while ROR1 knockdown lowered the viability and increased the apoptosis of HLEB3 cells. Additionally, increased P38 phosphorylation was identified as a contributor to lens epithelial cell apoptosis and ARC, with ROR1 influencing this through the phosphorylation of the P38. Similarly, the relationships between P300 and STAT3, upstream of ROR1, in apoptosis of LECs and ARC were explored, and it was found that P300 and STAT3 were negatively correlated with apoptosis of LECs and ARC. In addition, the double luciferase report showed that P300 and STAT3 synergistically up-regulated the expression of ROR1. Overall, this study demonstrates that the STAT3/ROR1/P38 pathway mitigates apoptosis of LECs in ARC progression, offering a novel strategy for ARC prevention and treatment in clinical settings.
Collapse
Affiliation(s)
- Yue Zhang
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yuzhu Hu
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Dongmei Su
- Mudanjiang Medical University, Mudanjiang, 157011, China
- Department of Genetics, Health Department, National Research Institute for Family Planning, Beijing, 100081, China
- Graduate School, Peking Union Medical College, Beijing, 100081, China
| | - Yanjiang Fu
- Daqing Ophthalmology Hospital, Daqing, 163711, China
| | - Xiaoya Chen
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xiao Zhang
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Shunfei Zheng
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xu Ma
- Department of Genetics, Health Department, National Research Institute for Family Planning, Beijing, 100081, China.
- Graduate School, Peking Union Medical College, Beijing, 100081, China.
| | - Shanshan Hu
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, 157011, China.
| |
Collapse
|
2
|
Li Y, Pan AP, Ye Y, Shao X, Tu R, Liu Y, Yu AY. FoxO1 promotes high glucose-induced inflammation and cataract formation via JAK1/STAT1. Graefes Arch Clin Exp Ophthalmol 2025:10.1007/s00417-025-06744-6. [PMID: 39878886 DOI: 10.1007/s00417-025-06744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/29/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
PURPOSE To investigate whether in diabetic cataract (DC), FoxO1 regulates high glucose (HG)-induced activation of NLRC4/IL-6 inflammatory mediators in human lens epithelial cells (SRA01/04) via the JAK1/STAT1 pathway, leading to cataract formation. METHODS Expression levels of FoxO1, inflammatory factor IL-6 and inflammatory vesicle NLRC4 were examined in SRA01/04 under high glucose (HG) stress at 25-150 mM. Rat lenses were also cultured using HG medium with or without the addition of the FoxO1 inhibitor AS1842856 and the JAK1 agonist RO8191. 5.5 mM glucose concentration group (NG) was used as a control. Real-time PCR, Western blots, and immunofluorescent staining evaluated the mRNA and protein levels of FoxO1, NLRC4, and IL-6. Apoptosis, cell viability, and EDU Staining were also assessed. RESULTS HG stimulation induced elevated FoxO1 expression and caused NLRC4/IL-6 activation in a concentration-dependent manner. Whereas knockdown of FoxO1 inhibited the high expression of NLRC4/IL-6 inflammatory mediators in response to HG stimulation. The growth of SRA01/04 was inhibited under HG condition, and the cell proliferation ability was restored and even promoted by knocking out FoxO1. HG incubation of rat lens resulted in lens clouding and cataract formation, which was prevented by AS1842856 treatment and reversed by RO8191. CONCLUSION FoxO1 positively regulates HG-induced SRA01/04 inflammatory activation through the JAK1/STAT1 pathway and promotes DC. This provides a feasible strategy for the treatment of diabetic cataract.
Collapse
Affiliation(s)
- Yike Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Department of Ophthalmology, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Chengguan District, Lanzhou, 730000, Gansu, People's Republic of China
| | - An-Peng Pan
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yishan Ye
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xu Shao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ruixue Tu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yang Liu
- Department of Ophthalmology, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Chengguan District, Lanzhou, 730000, Gansu, People's Republic of China
| | - A-Yong Yu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
3
|
Li J, Yang J, Liu Z, Li X. Effect of metformin on the level of aqueous humor inflammatory cytokines in patients with cataract. Sci Rep 2025; 15:3672. [PMID: 39880848 PMCID: PMC11779954 DOI: 10.1038/s41598-024-81424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/26/2024] [Indexed: 01/31/2025] Open
Abstract
This study investigated the content of inflammatory cytokines in the aqueous humor (AH) of cataract patients with type 2 diabetes (T2DM) and explored the effect of metformin on the level of cytokines. AH was collected from patients undergoing phacoemulsification and intraocular lens implantation in Peking University Third Hospital. Levels of cytokines were measured by Cytometric Bead Assay (CBA) Flex Set. Differences in level of AH cytokines were compared between patients using metformin and non-metformin medicine as blood sugar control drug for T2DM and age-related cataract patients without T2DM. A total of 67 patients were included, including 19 healthy controls, 33 patients in the metformin group, and 15 patients in the non-metformin group. The results showed that IL-6 levels were significantly higher in the non-metformin group than the metformin group and the healthy control group (p = 0.019 and 0.014, respectively). IFN-γ levels were also significantly higher in the non-metformin group than the metformin group and the healthy control group (p = 0.031 and 0.003, respectively). The levels of IL-10 in non-metformin group were significantly higher than those in the healthy control group (p = 0.008), whereas the levels of IL-10 showed no significant difference between metformin group and healthy controls. Metformin can reduce the level of cytokines in AH to a certain extent in cataract patients combined with T2DM. It is suggested that metformin may have preventive and therapeutic effects on the development of age-related cataract.
Collapse
Affiliation(s)
- Jiaxi Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Jiarui Yang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Ziyuan Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.
| | - Xuemin Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
4
|
Li Y, Zhang Y, He X, Guo Z, Yang N, Bai G, Zhao J, Xu D. The Mitochondrial Blueprint: Unlocking Secondary Metabolite Production. Metabolites 2024; 14:711. [PMID: 39728492 DOI: 10.3390/metabo14120711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Mitochondrial metabolism plays a pivotal role in regulating the synthesis of secondary metabolites, which are crucial for the survival and adaptation of organisms. These metabolites are synthesized during specific growth stages or in response to environmental stress, reflecting the organism's ability to adapt to changing conditions. Mitochondria, while primarily known for their role in energy production, directly regulate secondary metabolite biosynthesis by providing essential precursor molecules, energy, and reducing equivalents necessary for metabolic reactions. Furthermore, they indirectly influence secondary metabolism through intricate signaling pathways, including reactive oxygen species (ROS), metabolites, and redox signaling, which modulate various metabolic processes. This review explores recent advances in understanding the molecular mechanisms governing mitochondrial metabolism and their regulatory roles in secondary metabolite biosynthesis, which highlights the involvement of transcription factors, small RNAs, and post-translational mitochondrial modifications in shaping these processes. By integrating current insights, it aims to inspire future research into mitochondrial regulatory mechanisms in Arabidopsis thaliana, Solanum tuberosum, Nicotiana tabacum, and others that may enhance their secondary metabolite production. A deeper understanding of the roles of mitochondria in secondary metabolism could contribute to the development of new approaches in biotechnology applications.
Collapse
Affiliation(s)
- Yang Li
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China
| | - Yujia Zhang
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China
| | - Xinyu He
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China
| | - Ziyi Guo
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China
- Department of Cell Biology, Zunyi Medical University, Zunyi 563099, China
| | - Ning Yang
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China
| | - Guohui Bai
- Department of Cell Biology, Zunyi Medical University, Zunyi 563099, China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical University, Zunyi 563099, China
| | - Delin Xu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China
| |
Collapse
|
5
|
Wu Q, Liu C, Shu X, Duan L. Mechanistic and therapeutic perspectives of non-coding RNA-modulated apoptotic signaling in diabetic retinopathy. Cell Biol Toxicol 2024; 40:53. [PMID: 38970639 PMCID: PMC11227466 DOI: 10.1007/s10565-024-09896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024]
Abstract
Diabetic retinopathy (DR), a significant and vision-endangering complication associated with diabetes mellitus, constitutes a substantial portion of acquired instances of preventable blindness. The progression of DR appears to prominently feature the loss of retinal cells, encompassing neural retinal cells, pericytes, and endothelial cells. Therefore, mitigating the apoptosis of retinal cells in DR could potentially enhance the therapeutic approach for managing the condition by suppressing retinal vascular leakage. Recent advancements have highlighted the crucial regulatory roles played by non-coding RNAs (ncRNAs) in diverse biological processes. Recent advancements have highlighted that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs), act as central regulators in a wide array of biogenesis and biological functions, exerting control over gene expression associated with histogenesis and cellular differentiation within ocular tissues. Abnormal expression and activity of ncRNAs has been linked to the regulation of diverse cellular functions such as apoptosis, and proliferation. This implies a potential involvement of ncRNAs in the development of DR. Notably, ncRNAs and apoptosis exhibit reciprocal regulatory interactions, jointly influencing the destiny of retinal cells. Consequently, a thorough investigation into the complex relationship between apoptosis and ncRNAs is crucial for developing effective therapeutic and preventative strategies for DR. This review provides a fundamental comprehension of the apoptotic signaling pathways associated with DR. It then delves into the mutual relationship between apoptosis and ncRNAs in the context of DR pathogenesis. This study advances our understanding of the pathophysiology of DR and paves the way for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Qin Wu
- Jinan Second People's Hospital & The Ophthalmologic Hospital of Jinan, Jinan, 250021, China.
| | | | - Xiangwen Shu
- Jinan Second People's Hospital & The Ophthalmologic Hospital of Jinan, Jinan, 250021, China
| | - Lian Duan
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
| |
Collapse
|
6
|
Ababneh H, Balogh E, Csiki DM, Lente G, Fenyvesi F, Tóth A, Jeney V. High glucose promotes osteogenic differentiation of human lens epithelial cells through hypoxia-inducible factor (HIF) activation. J Cell Physiol 2024; 239:e31211. [PMID: 38304971 DOI: 10.1002/jcp.31211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Cataract, a leading cause of blindness, is characterised by lens opacification. Type 2 diabetes is associated with a two- to fivefold higher prevalence of cataracts. The risk of cataract formation increases with the duration of diabetes and the severity of hyperglycaemia. Hydroxyapatite deposition is present in cataractous lenses that could be the consequence of osteogenic differentiation and calcification of lens epithelial cells (LECs). We hypothesised that hyperglycaemia might promote the osteogenic differentiation of human LECs (HuLECs). Osteogenic medium (OM) containing excess phosphate and calcium with normal (1 g/L) or high (4.5 g/L) glucose was used to induce HuLEC calcification. High glucose accelerated and intensified OM-induced calcification of HuLECs, which was accompanied by hyperglycaemia-induced upregulation of the osteogenic markers Runx2, Sox9, alkaline phosphatase and osteocalcin, as well as nuclear translocation of Runx2. High glucose-induced calcification was abolished in Runx2-deficient HuLECs. Additionally, high glucose stabilised the regulatory alpha subunits of hypoxia-inducible factor 1 (HIF-1), triggered nuclear translocation of HIF-1α and increased the expression of HIF-1 target genes. Gene silencing of HIF-1α or HIF-2α attenuated hyperglycaemia-induced calcification of HuLECs, while hypoxia mimetics (desferrioxamine, CoCl2) enhanced calcification of HuLECs under normal glucose conditions. Overall, this study suggests that high glucose promotes HuLEC calcification via Runx2 and the activation of the HIF-1 signalling pathway. These findings may provide new insights into the pathogenesis of diabetic cataracts, shedding light on potential factors for intervention to treat this sight-threatening condition.
Collapse
Affiliation(s)
- Haneen Ababneh
- Research Centre for Molecular Medicine, MTA-DE Lendület Vascular Pathophysiology Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Enikő Balogh
- Research Centre for Molecular Medicine, MTA-DE Lendület Vascular Pathophysiology Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dávid Máté Csiki
- Research Centre for Molecular Medicine, MTA-DE Lendület Vascular Pathophysiology Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Gréta Lente
- Research Centre for Molecular Medicine, MTA-DE Lendület Vascular Pathophysiology Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Andrea Tóth
- Research Centre for Molecular Medicine, MTA-DE Lendület Vascular Pathophysiology Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktória Jeney
- Research Centre for Molecular Medicine, MTA-DE Lendület Vascular Pathophysiology Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
7
|
Li X, Chen D, Ouyang B, Wang S, Li Y, Li L, Zhu S, Zheng G. KLF5/MDM2 Axis Modulates Oxidative Stress and Epithelial-Mesenchymal Transition in Human Lens Epithelial Cells: The Role in Diabetic Cataract. J Transl Med 2023; 103:100226. [PMID: 37532224 DOI: 10.1016/j.labinv.2023.100226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
Diabetic cataract (DC) is a common cause of visual loss in older diabetic subjects. Krüppel-like factor 5 (KLF5) plays an essential role in migration and the epithelial-mesenchymal transition (EMT) in diverse cells and is involved in oxidative stress. However, the effects of KLF5 on DC remain unknown. This study aimed to examine the biological function of KLF5 in DC and its underlying mechanism. The expression patterns of KLF5 were detected in vivo and in vitro. Then, KLF5 was knocked down in human lens epithelial cells (HLECs) to explore its functional roles and underlying mechanisms. Dual-luciferase reporter assay and chromatin immunoprecipitation analysis were used to detect whether KLF5 could bind the promoter of E3 ubiquitin ligase mouse double minute 2 (MDM2), a key regulator of EMT. Lastly, the regulation of KLF5 in the biological behaviors of HLECs via MDM2 was analyzed. We found a significant increase of KLF5 in the DC lens anterior capsular, diabetic rat lens, and high glucose (HG)-stimulated HLECs. Knockdown of KLF5 inhibited oxidative stress, inflammation, migration, and EMT of HG-stimulated HLECs. KLF5 silencing impeded MDM2 expression and restricted the activation of MARK1/FAK and NF-κB signaling pathways in HLECs under HG condition. Additionally, KLF5 was found to bind the MDM2 promoter and enhance the transcriptional activity of MDM2. The protective effects by silencing KLF5 on HG-cultured HLECs could be offset by MDM2 overexpression. We demonstrated that knockdown of KLF5 alleviated oxidative stress, migration, and EMT of HG-cultured HLECs by regulating MDM2, suggesting a potential therapeutic strategy for DC.
Collapse
Affiliation(s)
- Xiao Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Doudou Chen
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Bowen Ouyang
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, Hainan, China
| | - Shengnan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yawei Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Siquan Zhu
- Department of Ophthalmology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Guangying Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Chen Y, Hao W, Wang M, Wu F, Long D, Li T, Zhang Y, Wang X, Lu B, Du C, Wu Q. Cytokine status and significant increase of IL-6 and sIL-6R in the aqueous humor of diabetic cataract patients revealed by quantitative multiplexed assays. J Int Med Res 2023; 51:3000605231175765. [PMID: 37694725 PMCID: PMC10498715 DOI: 10.1177/03000605231175765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/27/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVE This study aimed to investigate inflammatory cytokine expression profiles in the aqueous humor (AH) of diabetic cataract (DC) patients. METHODS A quantitative multiplexed antibody assay was performed to measure the expression levels of 40 inflammatory cytokines in AH samples from DC and age-related cataract (ARC) patients. Bioinformatics analysis was used to examine the functions of the cytokines. Enzyme-linked immunosorbent assays (ELISAs) and western blots were performed to verify the data. RESULTS The multiplexed antibody assay revealed that the expression levels of IL-6, sIL-6R, IL-17A, IL-8, MCP-1, TNF-β, RANTES, TIMP-1, and TIMP-2 were higher in the AH of DC patients compared with ARC patients. However, IL-1ra and IL-1a expression levels were lower in the DC patient AH samples. Pathway analysis indicated that IL-6 and sIL-6R belong to the class I helical cytokine family, which is associated with many biological functions. ELISA and western blot results confirmed that IL-6R and IL-6 expression levels were significantly higher in DC patients compared with ARC patients. CONCLUSIONS Our results revealed the status of 40 inflammatory cytokines in the AH by quantitative multiplexed assays. Additionally, IL-6 and sIL-6R were expressed markedly higher in DC compared with ARC, which may play critical roles in DC pathophysiology.
Collapse
Affiliation(s)
- Yan Chen
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Wenpei Hao
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Mei Wang
- Department of Geriatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feizhen Wu
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Da Long
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Tingting Li
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Ye Zhang
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiangning Wang
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Bin Lu
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Changsheng Du
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai, China
| | - Qiang Wu
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
9
|
Huang S, Wu K, Li B, Liu Y. lncRNA UCA1 inhibits mitochondrial dysfunction of skeletal muscle in type 2 diabetes mellitus by sequestering miR-143-3p to release FGF21. Cell Tissue Res 2023; 391:561-575. [PMID: 36602629 DOI: 10.1007/s00441-022-03733-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023]
Abstract
Increasing evidence suggests that insulin resistance in type 2 diabetes mellitus (T2DM) is associated with mitochondrial dysfunction in skeletal muscle, while the underlying molecular mechanisms remain elusive. This study aims to construct a ceRNA regulatory network that is involved in mitochondrial dysfunction of skeletal muscle in T2DM. Based on GEO database analysis, differentially expressed lncRNA and mRNA profiles were identified in skeletal muscle tissues of T2DM. Next, LASSO regression analysis was conducted to predict the key lncRNAs related to T2DM, which was validated by receiver operating characteristic (ROC) analysis. Moreover, the miRNAs related to skeletal muscle in T2DM were identified by WGCNA, followed by construction of gene-gene interaction network and GO and KEGG enrichment analyses. It was found that 12 lncRNAs and 6 miRNAs were related to skeletal muscle in T2DM. Moreover, the lncRNA-miRNA-mRNA ceRNA network involving UCA1, miR-143-3p, and FGF21 was constructed. UCA1, and FGF21 were downregulated, while miR-143-3p was upregulated in skeletal muscle cells (SkMCs) exposed to palmitic acid. Additionally, ectopic expression experiments were performed in SkMCs to confirm the effects of UCA1/miR-143-3p/FGF21 on mitochondrial dysfunction by determining mitochondrial ROS, oxygen consumption rate (OCR), membrane potential, and ATP level. Overexpression of miR-143-3p increased ROS accumulation and reduced the OCR, fluorescence ratio of JC-1, and ATP level, which were reversed by upregulation of UCA1 or FGF21. Collectively, lncRNA UCA1 inhibited mitochondrial dysfunction of skeletal muscle in T2DM by sequestering miR-143-3p away from FGF21, therefore providing a potential therapeutic target for alleviating mitochondrial dysfunction of skeletal muscle in T2DM.
Collapse
Affiliation(s)
- Sha Huang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, People's Republic of China
| | - Kai Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, People's Republic of China.,Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, Hunan Province, 410008, People's Republic of China
| | - Bingfa Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, People's Republic of China.,Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, Hunan Province, 410008, People's Republic of China
| | - Yuan Liu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, People's Republic of China. .,Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, Hunan Province, 410008, People's Republic of China.
| |
Collapse
|
10
|
Zeng Y, Wu Y, Zhang Q, Xiao X. Non-coding RNAs: The link between maternal malnutrition and offspring metabolism. Front Nutr 2022; 9:1022784. [DOI: 10.3389/fnut.2022.1022784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Early life nutrition is associated with the development and metabolism in later life, which is known as the Developmental Origin of Health and Diseases (DOHaD). Epigenetics have been proposed as an important explanation for this link between early life malnutrition and long-term diseases. Non-coding RNAs (ncRNAs) may play a role in this epigenetic programming. The expression of ncRNAs (such as long non-coding RNA H19, microRNA-122, and circular RNA-SETD2) was significantly altered in specific tissues of offspring exposed to maternal malnutrition. Changes in these downstream targets of ncRNAs lead to abnormal development and metabolism. This review aims to summarize the existing knowledge on ncRNAs linking the maternal nutrition condition and offspring metabolic diseases, such as obesity, type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD).
Collapse
|
11
|
Wu Y, Lan H, Zhang D, Hu Z, Zhang J, Li Z, Xia P, Tang X, Cai X, Yu P. Research progress on ncRNAs regulation of mitochondrial dynamics in diabetes. J Cell Physiol 2022; 237:4112-4131. [PMID: 36125936 DOI: 10.1002/jcp.30878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
Abstract
Diabetes mellitus and its complications are major health concerns worldwide that should be routinely monitored for evaluating disease progression. And there is currently much evidence to suggest a critical role for mitochondria in the common pathogenesis of diabetes and its complications. Mitochondrial dynamics are involved in the development of diabetes through mediating insulin signaling and insulin resistance, and in the development of diabetes and its complications through mediating endothelial impairment and other closely related pathophysiological mechanisms of diabetic cardiomyopathy (DCM). noncoding RNAs (ncRNAs) are closely linked to mitochondrial dynamics by regulating the expression of mitochondrial dynamic-associated proteins, or by regulating key proteins in related signaling pathways. Therefore, this review summarizes the research progress on the regulation of Mitochondrial Dynamics by ncRNAs in diabetes and its complications, which is a promising area for future antibodies or targeted drug development.
Collapse
Affiliation(s)
- Yifan Wu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Huixin Lan
- Huankui College, Nanchang University, Nanchang, Jiangxi, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Ziyan Hu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xia Cai
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
12
|
Wang X, Zhang Z, Wang M. MiR-29a regulates cardiomyocyte apoptosis by targeting Bak1 in diabetic cardiomyopathy. J Biochem 2022; 171:663-671. [PMID: 35274138 DOI: 10.1093/jb/mvac025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/06/2022] [Indexed: 11/14/2022] Open
Abstract
This study sought to investigate the association between microRNA-29a (miR-29a) and cardiomyocyte apoptosis in diabetic cardiomyopathy (DCM). DCM rat model was established by treating rats with streptozotocin (STZ), followed by injection of NC or miR-29a-3p mimics into the myocardium of rats. High glucose (HG)-treated H9c2 cells were transfected with NC and miR-29a-3p mimics. DCM rats presented elevated levels of blood glucose, HbA1c, and blood pressure and urine output and decreased body weight and cardiac contractile function after modeling. MiR-29a was lowly expressed in STZ-treated rats and HG-treated H9c2 cells. Upregulation of miR-29a improved cardiac structure and function and attenuated, alleviated myocardial histological abnormalities and fibrosis, and lowered cardiomyocyte apoptosis in DCM rats. Meanwhile, HG promoted H9c2 cell apoptosis, while miR-29a overexpression attenuated the function of HG. Compared with control group, the protein expression of Bax, cleaved-caspase3 and Bak1 in DCM and HG group were significantly upregulated, and the expression of Bcl-2 and Mcl-1 were downregulated, while miR-29a overexpression exerted opposite effect. Bioinformatics prediction method and western blot revealed that miR-29a directly targeted Bak1 and downregulated Bak1 expression. Overall, miR-29a regulated STZ- and HG-induced cardiomyocyte apoptosis by targeting Bak1, providing a novel understanding of the pathogenesis of DCM.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050004, China.,Department of Cardiology, The Third Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Zhitao Zhang
- Department of Experimental Center, Hebei Medical University Clinical College, Shijiazhuang, Hebei 050031, China
| | - Mei Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050004, China
| |
Collapse
|
13
|
Zheng Y, Cheng J, Zhang AF, Wang Y, Dai C, Li J. Acetylation of histone 3 promotes miR-29a expression and downregulates STAT3 in sepsis. Injury 2022; 53:416-421. [PMID: 34615595 DOI: 10.1016/j.injury.2021.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/24/2021] [Accepted: 09/12/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND MiR-29a targets signal transducers and activators of transcription 3 (STAT3) and negatively regulates its expression. Both miR-29a and STAT3 have been implicated in sepsis and upregulated miR-29a was associated with sepsis. However, the regulation of miR-29a in sepsis is not well elucidated. METHODS We treated TC-1 cells with interleukin (IL)-6 and the expression of miR-29a and STAT3 was measured. We pre-treated TC-1 cells with histone deacetylase inhibitor Trichostatin A, DNA methylation inhibitor 5-Azacytidine or histone acetyltransferase inhibitor A-485, then treated cells with IL-6 and analyzed the expression of miR-29a and STAT3. We measured the expression of histone deacetylases and histone acetyltransferase, and glycolysis in IL-6-treated TC-1 cells. We administrated miR-29a inhibitor or STAT3 inhibitor to septic mice and the survival rate and expression of anti-apoptotic factors were measured. RESUTLS IL-6 promoted miR-29a expression while suppressed STAT3 expression. Upregulation of miR-29a was associated with sepsis. Histone acetylation promoted miR-29a expression. IL-6 promoted glycolysis in TC-1 cells, which resulted in Acetyl-CoA accumulation. Inhibition of miR-29a promoted survival rate in septic mice while inhibiting STAT3 exacerbated death in mice. The protection of miR-29a inhibition against sepsis was abolished when STAT3 was inhibited. CONCLUSION Histone acetylation promoted miR-29a expression, resulting in downregulation of STAT3 and exacerbation of sepsis.
Collapse
Affiliation(s)
- Yun Zheng
- Department of Emergency ICU, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Anhui, Hefei, Shushan District, 230031, China
| | - Jun Cheng
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Anhui, Hefei, Shushan District, 230031, China
| | - AFang Zhang
- Department of Emergency ICU, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Anhui, Hefei, Shushan District, 230031, China
| | - YuYang Wang
- Department of Emergency ICU, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Anhui, Hefei, Shushan District, 230031, China
| | - ChengCai Dai
- Department of Emergency ICU, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Anhui, Hefei, Shushan District, 230031, China
| | - JiaBin Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Anhui, Hefei, Shushan District, 230031, China.
| |
Collapse
|
14
|
Ashrafizadeh M, Zarrabi A, Mostafavi E, Aref AR, Sethi G, Wang L, Tergaonkar V. Non-coding RNA-based regulation of inflammation. Semin Immunol 2022; 59:101606. [PMID: 35691882 DOI: 10.1016/j.smim.2022.101606] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/01/2022] [Accepted: 05/25/2022] [Indexed: 01/15/2023]
Abstract
Inflammation is a multifactorial process and various biological mechanisms and pathways participate in its development. The presence of inflammation is involved in pathogenesis of different diseases such as diabetes mellitus, cardiovascular diseases and even, cancer. Non-coding RNAs (ncRNAs) comprise large part of transcribed genome and their critical function in physiological and pathological conditions has been confirmed. The present review focuses on miRNAs, lncRNAs and circRNAs as ncRNAs and their potential functions in inflammation regulation and resolution. Pro-inflammatory and anti-inflammatory factors are regulated by miRNAs via binding to 3'-UTR or indirectly via affecting other pathways such as SIRT1 and NF-κB. LncRNAs display a similar function and they can also affect miRNAs via sponging in regulating levels of cytokines. CircRNAs mainly affect miRNAs and reduce their expression in regulating cytokine levels. Notably, exosomal ncRNAs have shown capacity in inflammation resolution. In addition to pre-clinical studies, clinical trials have examined role of ncRNAs in inflammation-mediated disease pathogenesis and cytokine regulation. The therapeutic targeting of ncRNAs using drugs and nucleic acids have been analyzed to reduce inflammation in disease therapy. Therefore, ncRNAs can serve as diagnostic, prognostic and therapeutic targets in inflammation-related diseases in pre-clinical and clinical backgrounds.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey.
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|