1
|
Tham BZ, Aleman DM, Nordström H, Nygren N, Coolens C. Treatment Planning Methods for Dose Painting by Numbers Treatment in Gamma Knife Radiosurgery. Adv Radiat Oncol 2024; 9:101534. [PMID: 39104874 PMCID: PMC11298584 DOI: 10.1016/j.adro.2024.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/16/2024] [Indexed: 08/07/2024] Open
Abstract
Purpose Dose painting radiation therapy delivers a nonuniform dose to tumors to account for heterogeneous radiosensitivity. With recent and ongoing development of Gamma Knife machines making large-volume brain tumor treatments more practical, it is increasingly feasible to deliver dose painting treatments. The increased prescription complexity means automated treatment planning is greatly beneficial, and the impact of dose painting on stereotactic radiosurgery (SRS) plan quality has not yet been studied. This research investigates the plan quality achievable for Gamma Knife SRS dose painting treatments when using optimization techniques and automated isocenter placement in treatment planning. Methods and Materials Dose painting prescription functions with varying parameters were applied to convert voxel image intensities to prescriptions for 10 sample cases. To study achievable plan quality and optimization, clinically placed isocenters were used with each dose painting prescription and optimized using a semi-infinite linear programming formulation. To study automated isocenter placement, a grassfire sphere-packing algorithm and a clinically available Leksell gamma plan isocenter fill algorithm were used. Plan quality for each optimized treatment plan was measured with dose painting SRS metrics. Results Optimization can be used to find high quality dose painting plans, and plan quality is affected by the dose painting prescription method. Polynomial function prescriptions show more achievable plan quality than sigmoid function prescriptions even with high mean dose boost. Automated isocenter placement is shown as a feasible method for dose painting SRS treatment, and increasing the number of isocenters improves plan quality. The computational solve time for optimization is within 5 minutes in most cases, which is suitable for clinical planning. Conclusions The impact of dose painting prescription method on achievable plan quality is quantified in this study. Optimization and automated isocenter placement are shown as possible treatment planning methods to obtain high quality plans.
Collapse
Affiliation(s)
- Benjamin Z. Tham
- Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Dionne M. Aleman
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Catherine Coolens
- Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Ramesh P, Ruan D, Liu SJ, Seo Y, Braunstein S, Sheng K. Hypoxia-informed RBE-weighted beam orientation optimization for intensity modulated proton therapy. Med Phys 2024; 51:2320-2333. [PMID: 38345134 PMCID: PMC10940223 DOI: 10.1002/mp.16978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Variable relative biological effectiveness (RBE) models in treatment planning have been proposed to optimize the therapeutic ratio of proton therapy. It has been reported that proton RBE decreases with increasing tumor oxygen level, offering an opportunity to address hypoxia-related radioresistance with RBE-weighted optimization. PURPOSE Here, we obtain a voxel-level estimation of partial oxygen pressure to weigh RBE values in a single biologically informed beam orientation optimization (BOO) algorithm. METHODS Three glioblastoma patients with [18 F]-fluoromisonidazole (FMISO)-PET/CT images were selected from the institutional database. Oxygen values were derived from tracer uptake using a nonlinear least squares curve fitting. McNamara RBE, calculated from proton dose, was then weighed using oxygen enhancement ratios (OER) for each voxel and incorporated into the dose fidelity term of the BOO algorithm. The nonlinear optimization problem was solved using a split-Bregman approach, with FISTA as the solver. The proposed hypoxia informed RBE-weighted method (HypRBE) was compared to dose fidelity terms using the constant RBE of 1.1 (cRBE) and the normoxic McNamara RBE model (RegRBE). Tumor homogeneity index (HI), maximum biological dose (Dmax), and D95%, as well as OAR therapeutic index (TI = gEUDCTV /gEUDOAR ) were evaluated along with worst-case statistics after normalization to normal tissue isotoxicity. RESULTS Compared to [cRBE, RegRBE], HypRBE increased tumor HI, Dmax, and D95% across all plans by on average [31.3%, 31.8%], [48.6%, 27.1%], and [50.4%, 23.8%], respectively. In the worst-case scenario, the parameters increase on average by [12.5%, 14.7%], [7.3%,-8.9%], and [22.3%, 2.1%]. Despite increased OAR Dmean and Dmax by [8.0%, 3.0%] and [13.1%, -0.1%], HypRBE increased average TI by [22.0%, 21.1%]. Worst-case OAR Dmean, Dmax, and TI worsened by [17.9%, 4.3%], [24.5%, -1.2%], and [9.6%, 10.5%], but in the best cases, HypRBE escalates tumor coverage significantly without compromising OAR dose, increasing the therapeutic ratio. CONCLUSIONS We have developed an optimization algorithm whose dose fidelity term accounts for hypoxia-informed RBE values. We have shown that HypRBE selects bE:\Alok\aaeams better suited to deliver high physical dose to low RBE, hypoxic tumor regions while sparing the radiosensitive normal tissue.
Collapse
Affiliation(s)
- Pavitra Ramesh
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Dan Ruan
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - S. John Liu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Steve Braunstein
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ke Sheng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
3
|
Tham BZ, Aleman D, Nordström H, Nygren N, Coolens C. Plan Assessment Metrics for Dose Painting in Stereotactic Radiosurgery. Adv Radiat Oncol 2023; 8:101281. [PMID: 37415903 PMCID: PMC10320410 DOI: 10.1016/j.adro.2023.101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/23/2023] [Indexed: 07/08/2023] Open
Abstract
Purpose As radiation therapy treatment precision increases with advancements in imaging and radiation delivery, dose painting treatment becomes increasingly feasible, where targets receive a nonuniform radiation dose. The high precision of stereotactic radiosurgery (SRS) makes it a good candidate for dose painting treatments, but no suitable metrics to assess dose painting SRS plans exist. Existing dose painting assessment metrics weigh target overdose and underdose equally but are unsuited for SRS plans, which typically avoid target underdose more. Current SRS metrics also prioritize reducing healthy tissue dose through selectivity and dose fall-off, and these metrics assume single prescriptions. We propose a set of metrics for dose painting SRS that would meet clinical needs and are calculated with nonuniform dose painting prescriptions. Methods and Materials Sample dose painting SRS prescriptions are first created from Gamma Knife SRS cases, apparent diffusion coefficient magnetic resonance images, and various image-to-prescription functions. Treatment plans are found through semi-infinite linear programming optimization and using clinically determined isocenters, then assessed with existing and proposed metrics. Modified versions of SRS metrics are proposed, including coverage, selectivity, conformity, efficiency, and gradient indices. Quality factor, a current dose painting metric, is applied both without changes and with modifications. A new metric, integral dose ratio, is proposed as a measure of target overdose. Results The merits of existing and modified metrics are demonstrated and discussed. A modified conformity index using mean or minimum prescription dose would be suitable for dose painting SRS with integral or maximum boost methods, respectively. Either modified efficiency index is a suitable replacement for the existing gradient index. Conclusions The proposed modified SRS metrics are appropriate measures of plan quality for dose painting SRS plans and have the advantage of giving equal values as the original SRS metrics when applied to single-prescription plans.
Collapse
Affiliation(s)
- Benjamin Z. Tham
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Dionne Aleman
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Catherine Coolens
- Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Korreman SS, Behrens CP, Hansen VN, Thygesen J, Andersen TL. New technologies from bench to bedside - report from the Nordic association for clinical physics 2023 symposium. Acta Oncol 2023; 62:1157-1160. [PMID: 37916999 DOI: 10.1080/0284186x.2023.2262111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 11/03/2023]
Affiliation(s)
- Stine Sofia Korreman
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Preibisch Behrens
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Vibeke Nordmark Hansen
- Department of Oncology, Copenhagen University Hospital, - Rigshospitalet, Copenhagen, Denmark
| | - Jesper Thygesen
- Department of Clinical Engineering and Procurement, Central Denmark Region, Aarhus Denmark
| | - Thomas Lund Andersen
- Department of Clinical Physiology & Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
5
|
Henjum H, Dahle TJ, Mairani A, Pilskog S, Stokkevåg C, Boer CG, Redalen KR, Minn H, Malinen E, Ytre‐Hauge KS. Combined RBE and OER optimization in proton therapy with FLUKA based on EF5-PET. J Appl Clin Med Phys 2023; 24:e14014. [PMID: 37161820 PMCID: PMC10476997 DOI: 10.1002/acm2.14014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 05/11/2023] Open
Abstract
INTRODUCTION Tumor hypoxia is associated with poor treatment outcome. Hypoxic regions are more radioresistant than well-oxygenated regions, as quantified by the oxygen enhancement ratio (OER). In optimization of proton therapy, including OER in addition to the relative biological effectiveness (RBE) could therefore be used to adapt to patient-specific radioresistance governed by intrinsic radiosensitivity and hypoxia. METHODS A combined RBE and OER weighted dose (ROWD) calculation method was implemented in a FLUKA Monte Carlo (MC) based treatment planning tool. The method is based on the linear quadratic model, with α and β parameters as a function of the OER, and therefore a function of the linear energy transfer (LET) and partial oxygen pressure (pO2 ). Proton therapy plans for two head and neck cancer (HNC) patients were optimized with pO2 estimated from [18 F]-EF5 positron emission tomography (PET) images. For the ROWD calculations, an RBE of 1.1 (RBE1.1,OER ) and two variable RBE models, Rørvik (ROR) and McNamara (MCN), were used, alongside a reference plan without incorporation of OER (RBE1.1 ). RESULTS For the HNC patients, treatment plans in line with the prescription dose and with acceptable target ROWD could be generated with the established tool. The physical dose was the main factor modulated in the ROWD. The impact of incorporating OER during optimization of HNC patients was demonstrated by the substantial difference found between ROWD and physical dose in the hypoxic tumor region. The largest physical dose differences between the ROWD optimized plans and the reference plan was 12.2 Gy. CONCLUSION The FLUKA MC based tool was able to optimize proton treatment plans taking the tumor pO2 distribution from hypoxia PET images into account. Independent of RBE-model, both elevated LET and physical dose were found in the hypoxic regions, which shows the potential to increase the tumor control compared to a conventional optimization approach.
Collapse
Affiliation(s)
- Helge Henjum
- Department of Physics and TechnologyUniversity of BergenBergenNorway
| | - Tordis Johnsen Dahle
- Department of Physics and TechnologyUniversity of BergenBergenNorway
- Department of Oncology and Medical PhysicsHaukeland University HospitalBergenNorway
| | - Andrea Mairani
- Centro Nazionale di Adroterapia Oncologica (CNAO Foundation)PaviaItaly
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
| | - Sara Pilskog
- Department of Physics and TechnologyUniversity of BergenBergenNorway
- Department of Oncology and Medical PhysicsHaukeland University HospitalBergenNorway
| | - Camilla Stokkevåg
- Department of Physics and TechnologyUniversity of BergenBergenNorway
- Department of Oncology and Medical PhysicsHaukeland University HospitalBergenNorway
| | | | - Kathrine Røe Redalen
- Department of PhysicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Heikki Minn
- Department of Oncology and RadiotherapyTurku University HospitalTurkuFinland
- Turku PET CentreUniversity of TurkuTurkuFinland
| | - Eirik Malinen
- Department of PhysicsUniversity of OsloOsloNorway
- Department of Medical PhysicsOslo University HospitalOsloNorway
| | | |
Collapse
|
6
|
Abstract
Hypoxia (oxygen deprivation) occurs in most solid malignancies, albeit with considerable heterogeneity. Hypoxia is associated with an aggressive cancer phenotype by promotion of genomic instability, evasion of anti-cancer therapies including radiotherapy and enhancement of metastatic risk. Therefore, hypoxia results in poor cancer outcomes. Targeting hypoxia to improve cancer outcomes is an attractive therapeutic strategy. Hypoxia-targeted dose painting escalates radiotherapy dose to hypoxic sub-volumes, as quantified and spatially mapped using hypoxia imaging. This therapeutic approach could overcome hypoxia-induced radioresistance and improve patient outcomes without the need for hypoxia-targeted drugs. This article will review the premise and underpinning evidence for personalized hypoxia-targeted dose painting. It will present data on relevant hypoxia imaging biomarkers, highlight the challenges and potential benefit of this approach and provide recommendations for future research priorities in this field. Personalized hypoxia-based radiotherapy de-escalation strategies will also be addressed.
Collapse
Affiliation(s)
- Ahmed Salem
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, Hashemite University, Zarqa, Jordan; Division of Cancer Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
7
|
Nario AP, Woodfield J, Dos Santos SN, Bergman C, Wuest M, Araújo YB, Lapolli AL, West FG, Wuest F, Bernardes ES. Synthesis of a 2-nitroimidazole derivative N-(4-[ 18F]fluorobenzyl)-2-(2-nitro-1H-imidazol-1-yl)-acetamide ([ 18 F]FBNA) as PET radiotracer for imaging tumor hypoxia. EJNMMI Radiopharm Chem 2022; 7:13. [PMID: 35697954 PMCID: PMC9192864 DOI: 10.1186/s41181-022-00165-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tissue hypoxia is a pathological condition characterized by reducing oxygen supply. Hypoxia is a hallmark of tumor environment and is commonly observed in many solid tumors. Non-invasive imaging techniques like positron emission tomography (PET) are at the forefront of detecting and monitoring tissue hypoxia changes in vivo. RESULTS We have developed a novel 18F-labeled radiotracer for hypoxia PET imaging based on cytotoxic agent benznidazole. Radiotracer N-(4-[18F]fluorobenzyl)-2-(2-nitro-1H-imidazol-1-yl)acetamide ([18F]FBNA) was synthesized through acylation chemistry with readily available 4-[18F]fluorobenzyl amine. Radiotracer [18F]FBNA was obtained in good radiochemical yields (47.4 ± 5.3%) and high radiochemical purity (> 95%). The total synthesis time was 100 min, including HPLC purification and the molar activity was greater than 40 GBq/µmol. Radiotracer [18F]FBNA was stable in saline and mouse serum for 6 h. [18F]FBNA partition coefficient (logP = 1.05) was found to be more lipophilic than [18F]EF-5 (logP = 0.75), [18F]FMISO (logP = 0.4) and [18F]FAZA (logP = - 0.4). In vitro studies showed that [18F]FBNA accumulates in gastric cancer cell lines AGS and MKN45 under hypoxic conditions. CONCLUSIONS Hence, [18F]FBNA represents a novel and easy-to-prepare PET radioligand for imaging hypoxia.
Collapse
Affiliation(s)
- Arian Pérez Nario
- Nuclear and Energy Research Institute (IPEN/CNEN - SP), São Paulo, SP, CEP 05508-000, Brazil
| | - Jenilee Woodfield
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 2R7, Canada
| | | | - Cody Bergman
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 2R7, Canada
| | - Melinda Wuest
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 2R7, Canada
| | - Yasniel Babí Araújo
- Nuclear and Energy Research Institute (IPEN/CNEN - SP), São Paulo, SP, CEP 05508-000, Brazil
| | - André Luis Lapolli
- Nuclear and Energy Research Institute (IPEN/CNEN - SP), São Paulo, SP, CEP 05508-000, Brazil
| | - Frederick G West
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 2R7, Canada
| | | |
Collapse
|
8
|
Korreman SS, Vogelius IR, Abdi AJ, Hansen SB, Behrens CP. Novel technologies in radiotherapy in the Nordic countries - report from the NACP2020/21 conference. Acta Oncol 2021; 60:1383-1385. [PMID: 34612766 DOI: 10.1080/0284186x.2021.1979250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Stine Sofia Korreman
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ivan Richter Vogelius
- Department of Oncology, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Ahmed Jibril Abdi
- Region of Southern Denmark, Clinical Engineering Department, Area of Diagnostic Radiology, Odense, Denmark
- Research and Innovation Unit, University of Southern Denmark, Odense, Denmark
| | - Søren Baarsgaard Hansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital Aarhus, Denmark
| | | |
Collapse
|