1
|
Büyükdoğan H, Ertürk C, Eren E, Öztürk Ç, Yıldırım B, Sarıtaş TB, Demirkol M. The impact of N-acetylcysteine on early periods of tendon healing: histopathologic, immunohistochemical, and biomechanical analysis in a rat model. Connect Tissue Res 2025:1-14. [PMID: 40119667 DOI: 10.1080/03008207.2025.2479501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/10/2025] [Indexed: 03/24/2025]
Abstract
PURPOSE This study aimed to evaluate the early effects of N-acetylcysteine, which has antioxidant, inflame-modulatory, and cytoprotective properties, on tendon healing. MATERIALS AND METHODS Thirty-five male Wistar Hannover rats were divided into five groups: first-week treatment (Group 1T), first-week control (Group 1C), third-week treatment (Group 3T), third-week control (Group 3C), and native tendons (Group N). Bilateral Achilles tenotomy was performed on all rats except Group N. After tenotomy, 150 mg/kg N-acetylcysteine was administered daily intraperitoneally to treatment groups, while isotonic saline was given to the control groups. Tendons were evaluated histopathologically, immunohistochemically, and biomechanically after sacrifice in the first and third weeks. RESULTS No significant differences were observed in the first week (p > 0.05). Movin and Bonar scores (lower scores reflect improved histologic healing) were significantly lower in Group 3T than in Group 3C (p = 0.002). Collagen type-I/type-III ratios were higher in Group 3T compared to Group 3C (p = 0.001). Fmax (N) values were similar across Group 3T, Group 3C, and Group N (p = 0.772). However, cross-sectional areas (mm2) were significantly smaller in Group 3T than in Group 3C (p = 0.001), with the smallest areas observed in native tendons. Thus, tensile strength (MPa, load per unit area) and toughness (J/103 mm3, energy absorbed per unit volume) were significantly higher in Group 3T than in Group 3C (p = 0.001). CONCLUSION N-acetylcysteine supplied some improved results on early markers of tendon healing. Although our findings support the potential of NAC as a therapeutic adjunct in tendon injuries, further studies are needed to evaluate the long-term effects and underlying mechanisms.
Collapse
Affiliation(s)
- Halil Büyükdoğan
- Istanbul Kanuni Sultan Süleyman Training and Research Hospital, Department of Orthopaedics and Traumatology, Health Sciences University, Istanbul, Turkey
| | - Cemil Ertürk
- Istanbul Kanuni Sultan Süleyman Training and Research Hospital, Department of Orthopaedics and Traumatology, Health Sciences University, Istanbul, Turkey
| | - Erdal Eren
- Gülhane Training and Research Hospital, Department of Orthopaedics and Traumatology, Health Sciences University, Ankara, Turkey
| | - Çiğdem Öztürk
- Department of Pathology, Recep Tayyip Erdoğan University Training and Research Hospital, Rize, Turkey
| | - Burak Yıldırım
- Kırklareli Training and Research Hospital, Department of Orthopaedics and Traumatology, Kırklareli, Turkey
| | - Tahir Burak Sarıtaş
- Tuzla State Hospital, Department of Orthopaedics and Traumatology, Istanbul, Turkey
| | - Metehan Demirkol
- Department of Mechanical Engineering, Yıldız Technical University, Istanbul, Turkey
- Department of Mechanical Engineering, YTU-AMRG (Advanced Materials Research Group), Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
2
|
Trotta MC, Itro A, Lepre CC, Russo M, Guida F, Moretti A, Braile A, Tarantino U, D’Amico M, Toro G. Effects of adipose-derived mesenchymal stem cell conditioned medium on human tenocytes exposed to high glucose. Ther Adv Musculoskelet Dis 2024; 16:1759720X231214903. [PMID: 38204801 PMCID: PMC10775729 DOI: 10.1177/1759720x231214903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/26/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Diabetic tendinopathy is a common invalidating and challenging disease that may be treated using stem cells. However, the effects of adipose-derived mesenchymal stem cell conditioned medium (ASC-CM) in diabetic tendinopathy have never been explored. OBJECTIVES The present study evaluated the effects of ASC-CM on morphology, cell viability, structure, and scratch wound closure of human tenocytes (HTNC) exposed to high glucose (HG). DESIGN Experimental study. METHODS HTNC were exposed to HG (25 mM) for 7, 14 and 21 days with or without ASC-CM for the last 24 h. CM was collected from 4 × 105 ASCs, centrifuged for 10 min at 200 g and sterilized with 0.22 μm syringe filter. RESULTS At 7 days, HG-HTNC had decreased cell viability [72 ± 2%, p < 0.01 versus normal glucose (NG)] compared to NG-HTNC (90 ± 5%). A further decrement was detected after 14 and 21 days (60 ± 4% and 60 ± 5%, both, p < 0.01 versus NG and p < 0.01 versus HG7). While NG-HTNC evidenced a normal fibroblast cell-like elongated morphology, HG-HTNC showed increased cell roundness. In contrast, HG-HTNC exposed to ASC-CM showed a significant increase in cell viability, an improved cell morphology and higher scratch wound closure at all HG time points. Moreover, the exposure to ASC-CM significantly increased thrombospondin 1 and transforming growth factor beta 1 (TGF-β1) content in HG-HTNC. The TGF-β1 elevation was paralleled by higher Collagen I and Vascular Endothelial Growth Factor in HG-HTNC. CONCLUSION ASC-CM may restore the natural morphology, cell viability and structure of HTNC, promoting their scratch wound closure through TGF-β1 increase.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Annalisa Itro
- PhD Course in Translational Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Marina Russo
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Antimo Moretti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Adriano Braile
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
- Caterina ClaudiaLepre is also affiliated to PhD Course in Translational Medicine, University of Campania ‘Luigi Vanvitell’, Naples, Italy
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Giuseppe Toro
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania ‘Luigi Vanvitelli’, Via L. De Crecchio 6, Naples 80138, Italy
| |
Collapse
|
3
|
Hsu YC, Chuang HC, Tsai KL, Tu TY, Shyong YJ, Kuo CH, Liu YF, Shih SS, Lin CL. Administration of N-Acetylcysteine to Regress the Fibrogenic and Proinflammatory Effects of Oxidative Stress in Hypertrophic Ligamentum Flavum Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1380353. [PMID: 36338342 PMCID: PMC9629932 DOI: 10.1155/2022/1380353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 03/22/2025]
Abstract
Ligamentum flavum hypertrophy (LFH) is a major cause of lumbar spinal stenosis (LSS). In hypertrophic ligamentum flavum (LF) cells, oxidative stress activates intracellular signaling and induces the expression of inflammatory and fibrotic markers. This study explored whether healthy and hypertrophic LF cells respond differently to oxidative stress, via examining the levels of phosphorylated p38 (p-p38), inducible nitric oxide synthase (iNOS), and α-smooth muscle actin (α-SMA). Furthermore, the efficacy of N-acetylcysteine (NAC), an antioxidant, in reversing the fibrogenic and proinflammatory effects of oxidative stress in hypertrophic LF cells was investigated by assessing the expression levels of p-p38, p-p65, iNOS, TGF-β, α-SMA, vimentin, and collagen I under H2O2 treatment with or without NAC. Under oxidative stress, p-p38 increased significantly in both hypertrophic and healthy LF cells, and iNOS was elevated in only the hypertrophic LF cells. This revealed that oxidative stress negatively affected both hypertrophic and healthy LF cells, with the hypertrophic LF cells exhibiting more active inflammation than did the healthy cells. After H2O2 treatment, p-p38, p-p65, iNOS, TGF-β, vimentin, and collagen I increased significantly, and NAC administration reversed the effects of oxidative stress. These results can form the basis of a novel therapeutic treatment for LFH using antioxidants.
Collapse
Affiliation(s)
- Yu-Chia Hsu
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Chun Chuang
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Yuan Tu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Jye Shyong
- Department of Clinical Pharmacy and Pharmaceutical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Cheng-Hsiang Kuo
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Fu Liu
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Shien Shih
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Li Lin
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
4
|
Why Use Adipose-Derived Mesenchymal Stem Cells in Tendinopathic Patients: A Systematic Review. Pharmaceutics 2022; 14:pharmaceutics14061151. [PMID: 35745724 PMCID: PMC9230128 DOI: 10.3390/pharmaceutics14061151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023] Open
Abstract
The aim of the present systematic review was to provide a clear overview of the clinical current research progress in the use of adipose-derived mesenchymal stem cells (ASCs) as an effective therapeutic option for the management of tendinopathies, pathologies clinically characterized by persistent mechanical pain and structural alteration of the tendons. The review was carried out using three databases (Scopus, ISI Web of Science and PubMed) and analyzed records from 2013 to 2021. Only English-language papers describing the isolation and manipulation of adipose tissue as source of ASCs and presenting ASCs as treatment for clinical tendinopathies were included. Overall, seven clinical studies met the inclusion criteria and met the minimum quality inclusion threshold. Data extraction and quality assessment were performed by groups of three reviewers. The available evidence showed the efficacy and safety of ASCs treatment for tendinopathies, although it lacked a clear description of the biomolecular mechanisms underlying the beneficial properties of ASCs.
Collapse
|
5
|
Roles of Oxidative Stress in Acute Tendon Injury and Degenerative Tendinopathy-A Target for Intervention. Int J Mol Sci 2022; 23:ijms23073571. [PMID: 35408931 PMCID: PMC8998577 DOI: 10.3390/ijms23073571] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Both acute and chronic tendon injuries are disabling sports medicine problems with no effective treatment at present. Sustained oxidative stress has been suggested as the major factor contributing to fibrosis and adhesion after acute tendon injury as well as pathological changes of degenerative tendinopathy. Numerous in vitro and in vivo studies have shown that the inhibition of oxidative stress can promote the tenogenic differentiation of tendon stem/progenitor cells, reduce tissue fibrosis and augment tendon repair. This review aims to systematically review the literature and summarize the clinical and pre-clinical evidence about the potential relationship of oxidative stress and tendon disorders. The literature in PubMed was searched using appropriate keywords. A total of 81 original pre-clinical and clinical articles directly related to the effects of oxidative stress and the activators or inhibitors of oxidative stress on the tendon were reviewed and included in this review article. The potential sources and mechanisms of oxidative stress in these debilitating tendon disorders is summarized. The anti-oxidative therapies that have been examined in the clinical and pre-clinical settings to reduce tendon fibrosis and adhesion or promote healing in tendinopathy are reviewed. The future research direction is also discussed.
Collapse
|