1
|
Lee SH, Li Z, Zhang EY, Kim DH, Huang Z, Heo Y, Lee SJ, Kang HW, Burdick JA, Mauck RL, Heo SC. Precision repair of zone-specific meniscal injuries using a tunable extracellular matrix-based hydrogel system. Bioact Mater 2025; 48:400-413. [PMID: 40083776 PMCID: PMC11904587 DOI: 10.1016/j.bioactmat.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 03/16/2025] Open
Abstract
Meniscus injuries present significant therapeutic challenges due to their limited self-healing capacity and the diverse biological and mechanical properties across the tissue. Conventional repair strategies do not replicate the complex zonal characteristics within the meniscus, resulting in suboptimal outcomes. In this study, we introduce an innovative fetal/adult and stiffness-tunable meniscus decellularized extracellular matrix (DEM)-based hydrogel system designed for precision repair of heterogeneous, zonal-dependent meniscus injuries. By synthesizing fetal and adult DEM hydrogels, we identified distinct cellular responses, including that hydrogels with adult meniscus-derived DEM promote more fibrochondrogenic phenotypes. The incorporation of methacrylated hyaluronic acid (MeHA) further refined the mechanical properties and injectability of the DEM-based hydrogels. The combination of fetal and adult DEM with MeHA allowed for precise tuning of stiffness, influencing cell differentiation and closely mimicking native tissue environments. In vivo tests confirmed the biocompatibility of hydrogels and their integration with native meniscus tissues. Furthermore, advanced 3D bioprinting techniques enabled the fabrication of hybrid hydrogels with biomaterial and mechanical gradients, effectively emulating the zonal properties of meniscus tissue and enhancing cell integration. This study represents a significant advance in meniscus tissue engineering, providing a promising platform for customized regenerative therapies across a range of heterogeneous fibrous connective tissues.
Collapse
Affiliation(s)
- Se-Hwan Lee
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Zizhao Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Ellen Y. Zhang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Dong Hwa Kim
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Ziqi Huang
- Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, PR China
| | - Yuna Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Sang Jin Lee
- Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, PR China
| | - Hyun-Wook Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jason A. Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, United States
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, United States
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Translational Musculoskeletal Research Center, Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, United States
| | - Su Chin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Translational Musculoskeletal Research Center, Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, United States
| |
Collapse
|
2
|
Özder MN, Yelkenci A, Kucak M, Altinbay A, Ustündag CB, Ciftci F. Development and Characterization of a Polycaprolactone/Graphene Oxide Scaffold for Meniscus Cartilage Regeneration Using 3D Bioprinting. Pharmaceutics 2025; 17:346. [PMID: 40143010 PMCID: PMC11944685 DOI: 10.3390/pharmaceutics17030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Meniscus injuries represent a critical challenge in orthopedic medicine due to the limited self-healing capacity of the tissue. This study presents the development and characterization of polycaprolactone/graphene oxide (PCL/GO) scaffolds fabricated using 3D bioprinting technology for meniscus cartilage regeneration. Methods: GO was incorporated at varying concentrations (1%, 3%, 5% w/w) to enhance the bioactivity, mechanical, thermal, and rheological properties of PCL scaffolds. Results: Rheological analyses revealed that GO significantly improved the storage modulus (G') from 36.1 Pa to 97.1 Pa and the yield shear stress from 97.2 Pa to 507.1 Pa, demonstrating enhanced elasticity and flow resistance. Mechanical testing showed that scaffolds with 1% GO achieved an optimal balance, with an elastic modulus of 614 MPa and ultimate tensile strength of 46.3 MPa, closely mimicking the native meniscus's mechanical behavior. FTIR analysis confirmed the successful integration of GO into the PCL matrix without disrupting its chemical integrity, while DSC analysis indicated improved thermal stability, with increases in melting temperatures. SEM analysis demonstrated a roughened surface morphology conducive to cellular adhesion and proliferation. Fluorescence microscopy using DAPI staining revealed enhanced cell attachment and regular nuclear distribution on PCL/GO scaffolds, particularly at lower GO concentrations. Antibacterial assays exhibited larger inhibition zones against E. coli and S. aureus, while cytotoxicity tests confirmed the biocompatibility of the PCL/GO scaffolds with fibroblast cells. Conclusions: This study highlights the potential of PCL/GO 3D-printed scaffolds as biofunctional platforms for meniscus tissue engineering, combining favorable mechanical, rheological, biological, and antibacterial properties.
Collapse
Affiliation(s)
- Melike Nur Özder
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Istanbul 34210, Turkey; (M.N.Ö.); (C.B.U.)
| | - Aslihan Yelkenci
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Health Sciences, Istanbul 34668, Turkey;
| | - Mine Kucak
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Aylin Altinbay
- Department of Metallurgical and Material Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Cem Bülent Ustündag
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Istanbul 34210, Turkey; (M.N.Ö.); (C.B.U.)
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul 34210, Turkey
| | - Fatih Ciftci
- Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
| |
Collapse
|
3
|
Zhang Y, Zhang EY, Cheung C, Heo Y, Tumenbayar BI, Lee SH, Bae Y, Heo SC. Epigenetic dynamics in meniscus cell migration and its zonal dependency in response to inflammatory conditions. APL Bioeng 2025; 9:016109. [PMID: 40041140 PMCID: PMC11878218 DOI: 10.1063/5.0239035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/07/2025] [Indexed: 03/06/2025] Open
Abstract
Meniscus injuries are challenging to treat due to the tissue heterogeneity and limited treatment efficacy. Understanding meniscus cell migration, crucial for healing, remains incomplete, especially its zonal dependency. This study explores how epigenetic mechanisms affect meniscus cell migration under inflammation, focusing on healing implications. Distinct histone modifications and chromatin dynamics between inner and outer cells were observed during migration, emphasizing the need to consider these differences in repair strategies. Furthermore, tumor necrosis factor alpha (TNF-α), a proinflammatory cytokine, slows inner meniscus cell migration, while outer cells remain unaffected, indicating a zonal response. Interestingly, TNF-α differentially alters histone modifications, particularly H3K27me3, between the cell types. Transcriptome analysis showed significant gene expression changes with inner cells more affected than outer cells. Gene cluster analysis revealed different responses in chromatin remodeling, extracellular matrix assembly, and wound healing between zones. We further identified potential therapeutic targets by using epigenetic drugs, GSKJ4 (a histone demethylase inhibitor) and C646 (a histone acetyltransferase inhibitor), which restored inner meniscus cell migration under inflammatory conditions, highlighting their potential in treating meniscus tears. This highlights their potential utility in treating meniscus tear injuries. Overall, our findings elucidate the intricate interplay between epigenetic mechanisms and meniscus cell migration, along with its meniscus zonal dependency. This study provides insight into potential targets for enhancing meniscus repair and regeneration, which may lead to improved clinical outcomes for patients with meniscus injuries and osteoarthritis.
Collapse
Affiliation(s)
| | | | | | | | - Bat-Ider Tumenbayar
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - Se-Hwan Lee
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | - Su Chin Heo
- Author to whom correspondence should be addressed:
| |
Collapse
|
4
|
Yang Z, Feng Y, Zhang M, Liu Y, Xiong Y, Wang X, Shi Y, Chen B, Wang Z, Ge H, Zhan H, Shen Z, Du G. The Molecular Mechanism Investigation of HBP-A Slows Down Meniscus Hypertrophy and Mineralisation by the Damage Mechanical Model. J Cell Mol Med 2024; 28:e70271. [PMID: 39656450 PMCID: PMC11629809 DOI: 10.1111/jcmm.70271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/11/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
HBP-A is the main active component of a traditional Chinese medicine Huaizhen Yanggan Capsule, for the remarkable treatment of knee osteoarthritis (KOA). This study aimed to elucidate the ameliorative effect of HBP-A on meniscus hypertrophy and mineralisation in KOA and the molecular mechanism of its action. An Hartley guinea pig model of KOA that underwent anterior cruciate ligament transection (ACLT) and a model of rat primary meniscus fibrochondrocytes (PMFs) were used to investigate the ameliorative effect of HBP-A on meniscal hypertrophy and calcification and its signal transduction mechanism of action. The results show that Guinea pig's meniscus width, as well as the area of meniscus calcification and meniscus and articular cartilage injury score, were significantly reduced in the HBP-A intervention group compared to the ACLT group. The expression levels of mtrix metalloproteinase 13 (MMP13), runt-related transcription factor 2 (Runx2), Indian hedgehog (Ihh), alkaline phosphatase (ALP), and ankylosis homologue (ANKH) at the protein and gene level significantly decreased in the HBP-A intervention group compared to the ACLT group. In vitro study, apoptosis, hypertrophy, and calcification of rat PMFs after 10% stretch force were significantly improved with HBP-A intervention. Western blot and RT-qPCR showed that hypertrophy, calcification, and p38 MAPK signalling pathway-related markers of PMFs were incredibly depressed in the HBP-A intervention group compared to the 10% stretch force group. In conclusion, HBP-A can slow down meniscus hypertrophy and mineralisation induced by abnormal mechanical loading, and its mechanism of action may be through the p38-MAPK signalling pathway.
Collapse
Affiliation(s)
- Zongrui Yang
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Yuanyuan Feng
- Department of Medical OncologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mingcai Zhang
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Yongming Liu
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Yizhe Xiong
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Xiang Wang
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Ying Shi
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Bo Chen
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Zhengming Wang
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Haiya Ge
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Hongsheng Zhan
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Zhibi Shen
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Guoqing Du
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
5
|
Lee SH, Li Z, Zhang EY, Kim DH, Huang Z, Lee SJ, Kang HW, Burdick JA, Mauck RL, Heo SC. Precision Repair of Zone-Specific Meniscal Injuries Using a Tunable Extracellular Matrix-Based Hydrogel System. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612723. [PMID: 39345590 PMCID: PMC11429709 DOI: 10.1101/2024.09.12.612723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Meniscus injuries present significant therapeutic challenges due to their limited self-healing capacity and diverse biological and mechanical properties across meniscal tissue. Conventional repair strategies neglect to replicate the complex zonal characteristics within the meniscus, resulting in suboptimal outcomes. In this study, we introduce an innovative, age- and stiffness-tunable meniscus decellularized extracellular matrix (DEM)-based hydrogel system designed for precision repair of heterogeneous, zonal-dependent meniscus injuries. By synthesizing age-dependent DEM hydrogels, we identified distinct cellular responses: fetal bovine meniscus-derived DEM promoted chondrogenic differentiation, while adult meniscus-derived DEM supported fibrochondrogenic phenotypes. The incorporation of methacrylate hyaluronic acid (MeHA) further refined the mechanical properties and injectability of the DEM-based hydrogels. The combination of age-dependent DEM with MeHA allowed for precise stiffness tuning, influencing cell differentiation and closely mimicking native tissue environments. In vivo tests confirmed the biocompatibility of hydrogels and their integration with native meniscus tissues. Furthermore, advanced 3D bioprinting techniques enabled the fabrication of hybrid hydrogels with biomaterial and mechanical gradients, effectively emulating the zonal properties of meniscus tissue and enhancing cell integration. This study represents a significant advancement in meniscus tissue engineering, providing a promising platform for customized regenerative therapies across a range of heterogeneous fibrous connective tissues.
Collapse
Affiliation(s)
- Se-Hwan Lee
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Zizhao Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ellen Y. Zhang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Dong Hwa Kim
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ziqi Huang
- Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, PR China
| | - Sang Jin Lee
- Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, PR China
| | - Hyun-Wook Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jason A. Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, United States
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, United States
- Translational Musculoskeletal Research Center, Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, United States
| | - Su Chin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, United States
- Translational Musculoskeletal Research Center, Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, United States
| |
Collapse
|
6
|
Zhang Y, Zhang Y, Wang C, Heo Y, Tumenbayar BI, Lee SH, Bae Y, Chin Heo S. Epigenetic Dynamics in Meniscus Cell Migration and its Zonal Dependency in Response to Inflammatory Conditions: Implications for Regeneration Strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604178. [PMID: 39091842 PMCID: PMC11291020 DOI: 10.1101/2024.07.22.604178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Meniscus injuries pose significant challenges in clinical settings, primarily due to the intrinsic heterogeneity of the tissue and the limited efficacy of current treatments. Endogenous cell migration is crucial for the healing process, yet the regulatory mechanisms of meniscus cell migration and its zonal dependency within the meniscus are not fully understood. Thus, this study investigates the role of epigenetic mechanisms in governing meniscus cell migration under inflammatory conditions, with a focus on their implications for injury healing and regeneration. Here, we discovered that a proinflammatory cytokine, TNF-α treatment significantly impedes the migration speed of inner meniscus cells, while outer meniscus cells are unaffected, underscoring a zonal-dependent response within the meniscus. Our analysis identified distinct histone modification patterns and chromatin dynamics between inner and outer meniscus cells during migration, highlighting the necessity to consider these zonal-dependent properties in devising repair strategies. Specifically, we found that TNF-α differentially influences histone modifications, particularly H3K27me3, between the two cell types. Transcriptome analysis further revealed that TNF-α treatment induces substantial gene expression changes, with inner meniscus cells exhibiting more pronounced alterations than outer cells. Gene cluster analysis pointed to distinct responses in chromatin remodeling, extracellular matrix assembly, and wound healing processes between the zonal cell populations. Moreover, we identified potential therapeutic targets by employing existing epigenetic drugs, GSKJ4 (a histone demethylase inhibitor) and C646 (a histone acetyltransferase inhibitor), to successfully restore the migration speed of inner meniscus cells under inflammatory conditions. This highlights their potential utility in treating meniscus tear injuries. Overall, our findings elucidate the intricate interplay between epigenetic mechanisms and meniscus cell migration, along with its meniscus zonal dependency. This study provides insights into potential targets for enhancing meniscus repair and regeneration, which may lead to improved clinical outcomes for patients with meniscus injuries and osteoarthritis.
Collapse
Affiliation(s)
- Yize Zhang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Yujia Zhang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Catherine Wang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuna Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Bat-Ider Tumenbayar
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Se-Hwan Lee
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY, USA
| | - Su Chin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Chen D, Wu R, Lai Y, Xiao B, Lai J, Zhang M. Anterior Cruciate Ligament Rupture Combined with Complete Radial Tear of the Posterior Horn of the Lateral Meniscus: Suture or Resection? J Knee Surg 2024; 37:426-435. [PMID: 37722418 DOI: 10.1055/s-0043-1774800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Anterior cruciate ligament (ACL) rupture often presents with a tear of the posterior horn of the lateral meniscus. There is no clear preference between ACL reconstruction with suture and resection of the meniscus. We aimed to compare the clinical efficacy of ACL reconstruction with suture versus resection in patients presenting with arthroscopic ACL rupture and radial complete tear of the posterior corner of the lateral meniscus. We retrospectively analyzed 157 patients with ACL rupture and complete radial tear of the posterior horn of the lateral meniscus. Between May 2010 and April 2015, 86 of 157 patients underwent ACL reconstruction and meniscus suture (study group, 54.78%) and 71 of 157 patients underwent ACL reconstruction and meniscus resection (control group, 45.22%) in our department. All patients were monitored over the 12 to 72-month follow-up period. The primary evaluation indices were the Lysholm scores, the International Knee Documentation Committee (IKDC) scores, pivot shift test, the Barret criteria, and magnetic resonance imaging (MRI) findings of meniscal healing. The majority of 157 patients were relatively young men (29.64 ± 7.79 years) with low body mass index (BMI) (23.79 ± 2.74). The postoperative Lysholm and IKDC scores of the two groups were significantly improved over the corresponding preoperative scores (p < 0.05). The clinical results and excellent and good rates were significantly better for the study group than for the control group (both, p < 0.05). MRI showed that the meniscal healed rate of the study group was 96.51%. There was no significant difference in BMI between subgroups for any functional outcome. For patients with ACL rupture and complete radial tear of the posterior horn of the lateral meniscus, ACL reconstruction and both simultaneous suture and resection of the posterior horn of the lateral meniscus were found to be safe and effective. There was no association between outcomes and BMI. However, the former was associated with a superior long-term clinical effect and may restore the integrity of the meniscus and is particularly recommended for young patients.
Collapse
Affiliation(s)
- Daohua Chen
- Department of Bone and Joint Sports Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Rong Wu
- Department of Bone and Joint Sports Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Yanqing Lai
- Department of Bone and Joint Sports Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Bo Xiao
- Department of Bone and Joint Sports Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Jiajing Lai
- Department of Bone and Joint Sports Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Minghua Zhang
- Department of Bone and Joint Sports Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| |
Collapse
|
8
|
Tramś E, Kamiński R. Molecular Biology of Meniscal Healing: A Narrative Review. Int J Mol Sci 2024; 25:768. [PMID: 38255841 PMCID: PMC10815262 DOI: 10.3390/ijms25020768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
This review provides insights at the molecular level into the current and old methods for treating meniscal injuries. Meniscal injuries have been found to have a substantial impact on the progression of osteoarthritis. In line with the "save the meniscus" approach, meniscectomy is considered a last-resort treatment. Nevertheless, it is important to note that mechanical repair alone may not achieve the complete restoration of the meniscus. A deep understanding of the healing pathways could lead to future improvements in meniscal healing. The inclusion of cytokines and chemokines has the potential to facilitate the process of tear repair or impede the inflammatory catabolic cascade. MicroRNA (miRNA) could serve as a potential biomarker for meniscal degeneration, and RNA injections might promote collagen and growth factor production. The critical aspect of the healing process is angiogenesis within the inner zone of the meniscus. The use of collagen scaffolds and the implantation of autologous meniscus fragments have been successfully integrated into clinical settings. These findings are encouraging and underscore the need for well-designed clinical trials to explore the most effective factors that can enhance the process of meniscal repair.
Collapse
Affiliation(s)
| | - Rafał Kamiński
- Centre of Postgraduate Medical Education, Department of Musculoskeletal Trauma and Orthopaedics, Gruca Orthopaedic and Trauma Teaching Hospital, Konarskiego 13, 05-400 Otwock, Poland;
| |
Collapse
|
9
|
Ciemniewska-Gorzela K, Górecki J, Wojtkowiak D, Henklewski R, Żak-Pałczynska K, Murray J, Talaśka K. Biomechanical Comparison of the Simple Suture Technique, Meniscal Matrix-Assisted Repair, and a Novel Meniscus Cap Suture Technique for Complex Meniscal Repair. Orthop J Sports Med 2023; 11:23259671231217439. [PMID: 38145225 PMCID: PMC10748953 DOI: 10.1177/23259671231217439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/06/2023] [Indexed: 12/26/2023] Open
Abstract
Background Meniscal repair is the gold standard for simple morphology tears. However, when the morphology and chronicity of the tear are less favorable, the success of the standard techniques is reduced. Purpose/Hypothesis To compare meniscal repair augmented by a new bioresorbable implant (Meniscus Cap) versus a traditional simple suture technique and the currently available augmented repair collagen matrix meniscus wrapping technique. It was hypothesized that the Meniscus Cap suture technique would increase ultimate failure load and less displacement during cyclic loading. Study Design Controlled laboratory study. Methods A total of 80 fresh porcine menisci were harvested. Complex tears were created in 60 menisci, and 20 intact menisci were tested as the control group. Repairs were performed on the 60 meniscal tears using 1 of the 3 techniques (20 menisci each): an inside-out H-suture group (SS), the collagen matrix wrapping technique (CMW), and the Meniscus Cap bioresorbable implant group (CM). The menisci were subjected to 500 loading cycles from 4 to 20 N at a frequency of 1 Hz, and the total displacement was recorded. Then, the specimens underwent load to failure testing at a rate of 3.15 mm/s, and the failure mode was noted. Results After 500 cycles of cyclic loading, there were no significant differences in displacement between the controls and CM group (0.524 vs 0.448 mm; P = .95). The displacement after the CM was significantly smaller compared with the CMW and the SS (0.448 vs 1.077 mm [P = .0009] and 0.448 vs 0.848 mm [P = .04], respectively). The ultimate load to failure was significantly greater for the controls and the CM group compared with the SS and CMW groups (controls, 1278.7 N and CM, 628.5 N vs CMW, 380.1 N and SS, 345.1 N; P < .05). The failure mode was suture breakage (suture failure) for all repairs. Conclusion In a porcine specimen meniscal repair model, the biomechanical properties of a novel Meniscus Cap repair technique were superior to that of the simple suture and CMW techniques. Clinical Relevance The results suggest that the Meniscal Cap repair technique may provide sufficient primary stability of the meniscal fixation even in the cases of complex meniscal tears.
Collapse
Affiliation(s)
| | - Jan Górecki
- Institute of Machine Design Faculty of Mechanical Engineering, Poznan University of Technology, Poznan, Poland
| | - Dominik Wojtkowiak
- Institute of Machine Design Faculty of Mechanical Engineering, Poznan University of Technology, Poznan, Poland
| | - Radomir Henklewski
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| | | | | | - Krzysztof Talaśka
- Institute of Machine Design Faculty of Mechanical Engineering, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
10
|
Tarafder S, Ghataure J, Langford D, Brooke R, Kim R, Eyen SL, Bensadoun J, Felix JT, Cook JL, Lee CH. Advanced bioactive glue tethering Lubricin/PRG4 to promote integrated healing of avascular meniscus tears. Bioact Mater 2023; 28:61-73. [PMID: 37214259 PMCID: PMC10199165 DOI: 10.1016/j.bioactmat.2023.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Meniscus injuries are extremely common with approximately one million patients undergoing surgical treatment annually in the U.S. alone, but no regenerative therapy exist. Previously, we showed that controlled applications of connective tissue growth factor (CTGF) and transforming growth factor beta 3 (TGFβ3) via fibrin-based bio-glue facilitate meniscus healing by inducing recruitment and stepwise differentiation of synovial mesenchymal stem/progenitor cells. Here, we first explored the potential of genipin, a natural crosslinker, to enhance fibrin-based glue's mechanical and degradation properties. In parallel, we identified the harmful effects of lubricin on meniscus healing and investigated the mechanism of lubricin deposition on the injured meniscus surface. We found that the pre-deposition of hyaluronic acid (HA) on the torn meniscus surface mediates lubricin deposition. Then we implemented chemical modifications with heparin conjugation and CD44 on our bioactive glue to achieve strong initial bonding and integration of lubricin pre-coated meniscal tissues. Our data suggested that heparin conjugation significantly enhances lubricin-coated meniscal tissues. Similarly, CD44, exhibiting a strong binding affinity to lubricin and hyaluronic acid (HA), further improved the integrated healing of HA/lubricin pre-coated meniscus injuries. These findings may represent an important foundation for developing a translational bio-active glue guiding the regenerative healing of meniscus injuries.
Collapse
Affiliation(s)
- Solaiman Tarafder
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Jaskirti Ghataure
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - David Langford
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Rachel Brooke
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Ryunhyung Kim
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Samantha Lewis Eyen
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Julian Bensadoun
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Jeffrey T. Felix
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - James L. Cook
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopedic Institute, University of Missouri, 1100 Virginia Avenue, Columbia, MO, 65212, USA
| | - Chang H. Lee
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| |
Collapse
|
11
|
Rydén M, Önnerfjord P. In Vitro Models and Proteomics in Osteoarthritis Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:57-68. [PMID: 37052846 DOI: 10.1007/978-3-031-25588-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
This review summarizes and exemplifies the current understanding of osteoarthritis in vitro models and describes their relevance for new insights in the future of osteoarthritis research. Our friend and highly appreciated colleague, Prof. Alan Grodzinsky has contributed greatly to the understanding of joint tissue biology and cartilage biomechanics. He frequently utilizes in vitro models and cartilage explant cultures, and recent work also includes proteomics studies. This review is dedicated to honor his 75-year birthday and will focus on recent proteomic in vitro studies related to osteoarthritis, and within this topic highlight some of his contributions to the field.
Collapse
Affiliation(s)
- Martin Rydén
- Orthopaedics, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Patrik Önnerfjord
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
12
|
Li Z, Weng X. Platelet-rich plasma use in meniscus repair treatment: a systematic review and meta-analysis of clinical studies. J Orthop Surg Res 2022; 17:446. [PMID: 36209223 PMCID: PMC9548158 DOI: 10.1186/s13018-022-03293-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 08/20/2022] [Indexed: 11/15/2022] Open
Abstract
Background There is conflicting clinical evidence whether platelet-rich plasma (PRP) therapies could translate to an increased meniscus healing rate and improved functional outcomes. The objective of this systematic review and meta-analysis was to compare the failure rate and patient-reported functional outcomes in meniscus repair augmented with and without PRP. Methods We comprehensively searched the PubMed, Web of Science, Medline, Embase, and Cochrane Library databases to identify studies that compared the clinical efficacy of meniscus repair performed with PRP versus without PRP. The primary outcome was the meniscus repair failure rate, while the secondary outcomes were knee-specific patient-reported outcomes, including the International Knee Documentation Committee (IKDC) score, Lysholm knee scale, visual analog scale, Tegner activity level score, Western Ontario and McMaster Universities Osteoarthritis Index score, Single Assessment Numeric Evaluation score, and Knee injury and Osteoarthritis Outcome Score. Furthermore, subgroup analyses were performed by stratifying the studies according to the PRP preparation technique to investigate the potential sources of heterogeneity among studies. Results Our meta-analysis included nine studies (two RCTs and seven non-RCTs) with 1164 participants. The failure rate in the PRP group was significantly lower than that in the non-PRP group [odds ratio: 0.64, 95% confidence interval (CI) (0.42, 0.96), P = 0.03]. Furthermore, the PRP group was associated with a statistically significant improvement in the visual analog scale for pain [Mean difference (MD): − 0.76, 95% CI (− 1.32, − 0.21), P = 0.007] and Knee injury and Osteoarthritis Outcome Score-symptom [MD: 8.02, 95% CI (2.99, 13.05), P = 0.002] compared with the non-PRP group. However, neither the IKDC score nor the Lysholm knee scale showed any differences between the two groups. In addition, the results of subgroup analyses favored PRP over platelet-rich fibrin matrix (PRFM) regarding the IKDC score. Conclusions Although meniscus repairs augmented with PRP led to significantly lower failure rates and better postoperative pain control compared with those of the non-PRP group, there is insufficient RCT evidence to support PRP augmentation of meniscus repair improving functional outcomes. Moreover, PRP could be recommended in meniscus repair augmentation compared with PRFM. PRFM was shown to have no benefit in improving functional outcomes.
Collapse
Affiliation(s)
- Ziquan Li
- Department of Orthopedic Surgery, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Beijing, 100730, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Xisheng Weng
- Department of Orthopedic Surgery, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Beijing, 100730, China. .,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China.
| |
Collapse
|
13
|
Tsai PH, Wong CC, Chan WP. Radial T2* mapping reveals early meniscal abnormalities in patients with knee osteoarthritis. Eur Radiol 2022; 32:5642-5649. [PMID: 35258674 DOI: 10.1007/s00330-022-08641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/21/2022] [Accepted: 02/06/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE We aimed to validate a 2D radial T2* mapping method and its ability to reveal subtle alterations in the menisci of patients with knee osteoarthritis (OA). METHODS Of 40 enrolled participants, 20 were diagnosed with OA, and 20 were age- and sex-matched asymptomatic controls. Data from the right knee of each participant were collected using a 1.5-T MRI equipped with a single-channel knee coil. T2* values were acquired using a conventional T2* mapping protocol and a radial T2* mapping method. Mean T2* values in the meniscal white zones, meniscal red zones, and total menisci were calculated. Numerical simulation was performed for validation. RESULTS Both simulation and clinical data confirmed that 2D radial T2* mapping provided better discrimination than the conventional method. Compared to controls, the OA group showed significantly greater mean (standard deviation) T2* values in the white zones (9.33 [2.29] ms vs. 6.04 [1.05] ms), red zones (9.18 [2.03] ms vs. 6.81 [1.28] ms), and total menisci (9.26 [2.06] ms vs. 6.34 [1.14] ms). Correlations were found between the Lequesne index and the meniscal T2* values in all three regions (r = 0.528, p = 0.017; r = 0.635, p = 0.003; and r = 0.556, p = 0.011, respectively). CONCLUSION These findings indicate that in early OA, radial T2* mapping is an alternative means of assessing meniscal degeneration and can be used to monitor its progression. KEY POINTS • Radial T2* mapping outperforms Cartesian T2* mapping. • Radial T2* measurements are useful in assessing meniscal degeneration. • Meniscal T2* values correlate well with disease severity.
Collapse
Affiliation(s)
- Ping-Huei Tsai
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chin-Chean Wong
- Department of Orthopedics, Shuang-Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wing P Chan
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, No. 111, Xinglong Road, Section 3, Taipei, 116, Taiwan. .,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
14
|
Trivedi J, Betensky D, Desai S, Jayasuriya CT. Post-Traumatic Osteoarthritis Assessment in Emerging and Advanced Pre-Clinical Meniscus Repair Strategies: A Review. Front Bioeng Biotechnol 2021; 9:787330. [PMID: 35004646 PMCID: PMC8733822 DOI: 10.3389/fbioe.2021.787330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Surgical repair of meniscus injury is intended to help alleviate pain, prevent further exacerbation of the injury, restore normal knee function, and inhibit the accelerated development of post-traumatic osteoarthritis (PTOA). Meniscus injuries that are treated poorly or left untreated are reported to significantly increase the risk of PTOA in patients. Current surgical approaches for the treatment of meniscus injuries do not eliminate the risk of accelerated PTOA development. Through recent efforts by scientists to develop innovative and more effective meniscus repair strategies, the use of biologics, allografts, and scaffolds have come into the forefront in pre-clinical investigations. However, gauging the extent to which these (and other) approaches inhibit the development of PTOA in the knee joint is often overlooked, yet an important consideration for determining the overall efficacy of potential treatments. In this review, we catalog recent advancements in pre-clinical therapies for meniscus injuries and discuss the assessment methodologies that are used for gauging the success of these treatments based on their effect on PTOA severity. Methodologies include histopathological evaluation of cartilage, radiographic evaluation of the knee, analysis of knee function, and quantification of OA predictive biomarkers. Lastly, we analyze the prevalence of these methodologies using a systemic PubMed® search for original scientific journal articles published in the last 3-years. We indexed 37 meniscus repair/replacement studies conducted in live animal models. Overall, our findings show that approximately 75% of these studies have performed at least one assessment for PTOA following meniscus injury repair. Out of this, 84% studies have reported an improvement in PTOA resulting from treatment.
Collapse
Affiliation(s)
| | | | | | - Chathuraka T. Jayasuriya
- Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
15
|
Aydın N, Karaismailoğlu B, Alaylıoğlu M, Gezen-Ak D, Şengül B, Candaş E, Yılmazer S, Dursun E. Gene expression profiling of primary fibrochondrocyte cultures in traumatic and degenerative meniscus lesions. J Orthop Surg (Hong Kong) 2021; 29:23094990211000168. [PMID: 33729061 DOI: 10.1177/23094990211000168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE This study aimed to investigate how fibroblastic and chondrocytic properties of human meniscal fibrochondrocytes are affected in culture conditions according to the type of meniscal pathology and localization, and to provide basic information for tissue-engineering studies. METHODS Primary fibrochondrocyte cultures were prepared from meniscus samples of patients who had either traumatic tear or degeneration due to osteoarthritis. Cultures were compared in terms of mRNA expression levels of COL1A1, COL2A1, COMP1, HIF1A, HIF2A, and SOX9 and secreted total collagen and sulfated sGAG levels according to the type of meniscal pathology, anatomical localization, and the number of subcultures. RESULTS mRNA expression levels of COL1A1, COMP1, HIF1A, HIF2A, and SOX9 were found to be increased in subsequent subcultures in all specimens. COL1A1 mRNA expression levels of both lateral and medial menisci of patients with traumatic tear were significantly higher than in patients with degenerative pathology, indicating a more fibroblastic character. P1 subculture of lateral and P3 or further subculture of medial meniscus showed more fibroblastic characteristics in patients with degenerative pathology. Furthermore, in patients with degenerative pathology, the subcultures of the lateral meniscus (especially on the inner part) presented more chondrocytic characteristics than did those of medial meniscus. CONCLUSIONS The mRNA expression levels of the cultures showed significant differences according to the anatomical localization and pathology of the meniscus, indicating distinct chondrocytic and fibroblastic features. This fundamental knowledge would help researchers to choose more efficient cell sources for cell-seeding of a meniscus scaffold, and to generate a construct resembling the original meniscus tissue.
Collapse
Affiliation(s)
- Nuri Aydın
- Department of Orthopaedics and Traumatology, 64298Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bedri Karaismailoğlu
- Department of Orthopaedics and Traumatology, 64298Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Merve Alaylıoğlu
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, 64298Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Duygu Gezen-Ak
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, 64298Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Büşra Şengül
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, 64298Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Esin Candaş
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, 64298Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Selma Yılmazer
- Department of Medical Biology, Faculty of Medicine, 187458Altinbas University, Istanbul, Turkey
| | - Erdinç Dursun
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, 64298Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.,Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
16
|
Bansal S, Floyd ER, Kowalski MA, Aikman E, Elrod P, Burkey K, Chahla J, LaPrade RF, Maher SA, Robinson JL, Patel JM. Meniscal repair: The current state and recent advances in augmentation. J Orthop Res 2021; 39:1368-1382. [PMID: 33751642 PMCID: PMC8249336 DOI: 10.1002/jor.25021] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/04/2021] [Accepted: 03/02/2021] [Indexed: 02/04/2023]
Abstract
Meniscal injuries represent one of the most common orthopedic injuries. The most frequent treatment is partial resection of the meniscus, or meniscectomy, which can affect joint mechanics and health. For this reason, the field has shifted gradually towards suture repair, with the intent of preservation of the tissue. "Save the Meniscus" is now a prolific theme in the field; however, meniscal repair can be challenging and ineffective in many scenarios. The objectives of this review are to present the current state of surgical management of meniscal injuries and to explore current approaches being developed to enhance meniscal repair. Through a systematic literature review, we identified meniscal tear classifications and prevalence, approaches being used to improve meniscal repair, and biological- and material-based systems being developed to promote meniscal healing. We found that biologic augmentation typically aims to improve cellular incorporation to the wound site, vascularization in the inner zones, matrix deposition, and inflammatory relief. Furthermore, materials can be used, both with and without contained biologics, to further support matrix deposition and tear integration, and novel tissue adhesives may provide the mechanical integrity that the meniscus requires. Altogether, evaluation of these approaches in relevant in vitro and in vivo models provides new insights into the mechanisms needed to salvage meniscal tissue, and along with regulatory considerations, may justify translation to the clinic. With the need to restore long-term function to injured menisci, biologists, engineers, and clinicians are developing novel approaches to enhance the future of robust and consistent meniscal reparative techniques.
Collapse
Affiliation(s)
- Sonia Bansal
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | - Kyley Burkey
- University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | | | | - Jay M. Patel
- Emory University, Atlanta, Georgia, USA
- Atlanta VA Medical Center, Decatur, Georgia, USA
| |
Collapse
|
17
|
Makarczyk MJ, Gao Q, He Y, Li Z, Gold MS, Hochberg MC, Bunnell BA, Tuan RS, Goodman SB, Lin H. Current Models for Development of Disease-Modifying Osteoarthritis Drugs. Tissue Eng Part C Methods 2021; 27:124-138. [PMID: 33403944 PMCID: PMC8098772 DOI: 10.1089/ten.tec.2020.0309] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a painful and disabling disease that affects millions of people worldwide. Symptom-alleviating treatments exist, although none with long-term efficacy. Furthermore, there are currently no disease-modifying OA drugs (DMOADs) with demonstrated efficacy in OA patients, which is, in part, attributed to a lack of full understanding of the pathogenesis of OA. The inability to translate findings from basic research to clinical applications also highlights the deficiencies in the available OA models at simulating the clinically relevant pathologies and responses to treatments in humans. In this review, the current status in the development of DMOADs will be first presented, with special attention to those in Phase II-IV clinical trials. Next, current in vitro, ex vivo, and in vivo OA models are summarized and the respective advantages and disadvantages of each are highlighted. Of note, the development and application of microphysiological or tissue-on-a-chip systems for modeling OA in humans are presented and the issues that need to be addressed in the future are discussed. Microphysiological systems should be given serious consideration for their inclusion in the DMOAD development pipeline, both for their ability to predict drug safety and efficacy in human clinical trials at present, as well as for their potential to serve as a test platform for personalized medicine. Impact statement At present, no disease-modifying osteoarthritis (OA) drugs (DMOADs) have been approved for widespread clinical use by regulatory bodies. The failure of developing effective DMOADs is likely owing to multiple factors, not the least of which are the intrinsic differences between the intact human knee joint and the preclinical models. This work summarizes the current OA models for the development of DMOADs, discusses the advantages/disadvantages of each, and then proposes future model development to aid in the discovery of effective and personalized DMOADs. The review also highlights the microphysiological systems, which are emerging as a new platform for drug development.
Collapse
Affiliation(s)
- Meagan J. Makarczyk
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University, California, USA
| | - Yuchen He
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zhong Li
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael S. Gold
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark C. Hochberg
- Department of Medicine and Epidemiology and Public Health, University of Maryland, Baltimore, Maryland, USA
| | - Bruce A. Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rocky S. Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, California, USA
- Department of Bioengineering, Stanford University, California, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Affiliation(s)
- Spencer E Szczesny
- Department of Biomedical Engineering, Department of Orthopaedics and Rehabilitation, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|