1
|
Kersten S, Taschke H, Vorländer M. Finite element analysis of the osseous spiral lamina's influence on inner ear fluid flow during bone conduction stimulation. Hear Res 2025; 459:109205. [PMID: 39951858 DOI: 10.1016/j.heares.2025.109205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/17/2025]
Abstract
Recent studies have investigated the anatomy and motion of the human cochlear partition, revealing insights into the flexible nature of the osseous spiral lamina (OSL). These investigations have primarily focused on air-conducted stimulation, leaving the impact of the OSL's flexibility during bone-conducted (BC) stimulation largely unexplored. By considering the OSL as either flexible or rigid in a finite element model of the human inner ear, we examined the effect of the OSL's flexibility on the fluid flow in the inner ear during BC stimulation, which was divided into contributors entering via the oval window (OW) and rigid body stimulation. Our results with rigid body stimulation indicate that the OSL facilitates an increased differential fluid flow at the round window compared to the OW, aligning with experimental observations interpreted as third window effects. Analysis of the OSL motion showed that this contribution results from a compressional motion of the OSL's vestibular and tympanic plates which is significantly lower in magnitude than the plates' translation in the direction of the stimulation. Separately applying OW input and rigid body stimulation provided insights into the interaction of BC sound entering via the OW and the reaction of the stapes to complex interior sound pressure distributions. Combined with the observations from a prior study (Kersten et al., 2024b) our results suggest a more important role for the OSL in BC hearing than previously understood. These findings enhance our understanding of the inner ear's response during BC and contribute to ongoing investigations into the interaction of BC mechanisms, while highlighting the need for further research into the deformation of the cochlear boundaries.
Collapse
Affiliation(s)
- Simon Kersten
- Institute for Hearing Technology and Acoustics, RWTH Aachen University, Aachen, Germany.
| | - Henning Taschke
- formerly at: Institute of Communication Acoustics, Ruhr University Bochum, Bochum, Germany
| | - Michael Vorländer
- Institute for Hearing Technology and Acoustics, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
2
|
Li H, Agrawal S, Zhu N, Cacciabue DI, Rivolta MN, Hartley DEH, Jiang D, Ladak HM, O'Donoghue GM, Rask-Andersen H. A novel therapeutic pathway to the human cochlear nerve. Sci Rep 2024; 14:26795. [PMID: 39500916 PMCID: PMC11538549 DOI: 10.1038/s41598-024-74661-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024] Open
Abstract
Traditional approaches to the human cochlear nerve have been impeded by its bony encasement deep inside the skull base. We present an innovative, minimally invasive, therapeutic pathway for direct access to the nerve to deliver novel regenerative therapies. Neuroanatomical studies on 10 cadaveric human temporal bones were undertaken to identify a potentially safe therapeutic pathway to the cochlear nerve. Simulations based on three-dimensional delineation of anatomical structures obtained from synchrotron phase-contrast imaging were analyzed. This enabled the identification of an approach to the nerve in the fundus of the internal auditory meatus by trephining the medial modiolar wall of the cochlea via the round window for a median depth of 1.48 mm (range 1.21-1.91 mm). The anatomical access was validated on 9 additional human temporal bones using radio-opaque markers and contrast injection with micro-computed tomography surveillance. We thus created an effective conduit for the delivery of therapeutic agents to the cochlear nerve.
Collapse
Affiliation(s)
- Hao Li
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Sumit Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Department of Electrical and Computer Engineering, Western University, London, ON, Canada
- School of Biomedical Engineering, Western University, London, ON, Canada
| | - Ning Zhu
- Canadian Light Source, Saskatoon, Canada
- Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Daniela I Cacciabue
- Centre for Stem Cell Biology, School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, South Yorkshire, S10 2TN, UK
| | - Marcelo N Rivolta
- Centre for Stem Cell Biology, School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, South Yorkshire, S10 2TN, UK
| | - Douglas E H Hartley
- Nottingham Biomedical Research Centre, National Institute for Health Research (NIHR), Nottingham, UK
- Queens Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
- Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
| | - Dan Jiang
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK.
- Hearing Implant Centre, Guy's and St. Thomas' NHS Foundation Trust, London, UK.
| | - Hanif M Ladak
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Department of Electrical and Computer Engineering, Western University, London, ON, Canada
- School of Biomedical Engineering, Western University, London, ON, Canada
| | - Gerard M O'Donoghue
- Nottingham Biomedical Research Centre, National Institute for Health Research (NIHR), Nottingham, UK
- Queens Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Kersten S, Taschke H, Vorländer M. Influence of the cochlear partition's flexibility on the macro mechanisms in the inner ear. Hear Res 2024; 453:109127. [PMID: 39447318 DOI: 10.1016/j.heares.2024.109127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Recent studies have highlighted the anatomy of the cochlear partition (CP), revealing insights into the flexible nature of the osseous spiral lamina (OSL) and the existence of a flexible cochlear partition bridge (CPB) between the OSL and the basilar membrane (BM). However, most existing inner ear models treat the OSL as a rigid structure and ignore the CPB, neglecting their potential impact on intracochlear sound pressure and motion of the BM. In this paper, we investigate the effect of the CP's flexibility by including the OSL and CPB as either rigid or flexible structures in a numerical anatomical model of the human inner ear. Our findings demonstrate that the flexibility of the OSL and the presence of the CPB significantly affect cochlear macro mechanisms, including differential intracochlear sound pressure, resistive behavior in cochlear impedances, CP stiffness, and BM velocity. These results emphasize the importance of considering the flexibility of the entire CP to enhance our understanding of cochlear function and to accurately interpret experimental data on inner ear mechanics.
Collapse
Affiliation(s)
- Simon Kersten
- Institute for Hearing Technology and Acoustics, RWTH Aachen University, Aachen, Germany.
| | - Henning Taschke
- formerly at: Institute of Communication Acoustics, Ruhr University Bochum, Bochum, Germany
| | - Michael Vorländer
- Institute for Hearing Technology and Acoustics, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Hallin K, Larsson U, Schart-Morén N. Do different types of cochlear implant electrode influence hearing preservation and speech perception? Acta Otolaryngol 2024; 144:552-557. [PMID: 39351976 DOI: 10.1080/00016489.2024.2407395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Hearing can be preserved in patients with considerable low-frequency hearing implanted with cochlear implants. However, the most favorable electrode type for hearing preservation and speech perception has been debated. OBJECTIVE The aim was to evaluate hearing preservation and speech discrimination one year post-implantation for all types of cochlear implant electrode used for adult patients implanted between 2014 and 2022. METHODS The HEARING group formula was used to calculate the degree of hearing preservation, which was defined as minimal (0-25%), partial (25-75%) or complete (≥ 75%). Speech perception was measured by monosyllabic words. RESULTS Analysis of hearing preservation for the various electrode types revealed that FLEX 24 preserved hearing statistically significantly better (p < 0.05) than FLEX 28, FLEX soft, and contour advance. Also, FLEX 20 preserved hearing statistically significantly better (p < 0.05) than contour advance. No statistically significant difference was found for the monosyllabic word score for the different electrode types. DISCUSSION There was a statistically significant difference between the electrode types in terms of hearing preservation but not for speech perception. The result of this study contributes important information about hearing preservation and speech perception that can be used for pre-surgery patient counselling.
Collapse
Affiliation(s)
- Karin Hallin
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Ulrika Larsson
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Nadine Schart-Morén
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Liu W, Li H, Kämpfe Nordström C, Danckwardt-Lillieström N, Agrawal S, Ladak HM, Rask-Andersen H. Immuno-surveillance and protection of the human cochlea. Front Neurol 2024; 15:1355785. [PMID: 38817543 PMCID: PMC11137295 DOI: 10.3389/fneur.2024.1355785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/21/2024] [Indexed: 06/01/2024] Open
Abstract
Background Despite its location near infection-prone areas, the human inner ear demonstrates remarkable resilience. This suggests that there are inherent instruments deterring the invasion and spread of pathogens into the inner ear. Here, we combined high-resolution light microscopy, super-resolution immunohistochemistry (SR-SIM) and synchrotron phase contrast imaging (SR-PCI) to identify the protection and barrier systems in the various parts of the human inner ear, focusing on the lateral wall, spiral ganglion, and endolymphatic sac. Materials and methods Light microscopy was conducted on mid-modiolar, semi-thin sections, after direct glutaraldehyde/osmium tetroxide fixation. The tonotopic locations were estimated using SR-PCI and 3D reconstruction in cadaveric specimens. The sections were analyzed for leucocyte and macrophage activity, and the results were correlated with immunohistochemistry using confocal microscopy and SR-SIM. Results Light microscopy revealed unprecedented preservation of cell anatomy and several macrophage-like cells that were localized in the cochlea. Immunohistochemistry demonstrated IBA1 cells frequently co-expressing MHC II in the spiral ganglion, nerve fibers, lateral wall, spiral limbus, and tympanic covering layer at all cochlear turns as well as in the endolymphatic sac. RNAscope assays revealed extensive expression of fractalkine gene transcripts in type I spiral ganglion cells. CD4 and CD8 cells occasionally surrounded blood vessels in the modiolus and lateral wall. TMEM119 and P2Y12 were not expressed, indicating that the cells labeled with IBA1 were not microglia. The round window niche, compact basilar membrane, and secondary spiral lamina may form protective shields in the cochlear base. Discussion The results suggest that the human cochlea is surveilled by dwelling and circulating immune cells. Resident and blood-borne macrophages may initiate protective immune responses via chemokine signaling in the lateral wall, spiral lamina, and spiral ganglion at different frequency locations. Synchrotron imaging revealed intriguing protective barriers in the base of the cochlea. The role of the endolymphatic sac in human inner ear innate and adaptive immunity is discussed.
Collapse
Affiliation(s)
- Wei Liu
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Hao Li
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Charlotta Kämpfe Nordström
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | | | - Sumit Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| | - Hanif M. Ladak
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Furlani M, Riberti N, Gatto ML, Giuliani A. High-Resolution Phase-Contrast Tomography on Human Collagenous Tissues: A Comprehensive Review. Tomography 2023; 9:2116-2133. [PMID: 38133070 PMCID: PMC10748183 DOI: 10.3390/tomography9060166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Phase-contrast X-ray imaging is becoming increasingly considered since its first applications, which occurred almost 30 years ago. Particular emphasis was placed on studies that use this technique to investigate soft tissues, which cannot otherwise be investigated at a high resolution and in a three-dimensional manner, using conventional absorption-based settings. Indeed, its consistency and discrimination power in low absorbing samples, unified to being a not destructive analysis, are pushing interests on its utilization from researchers of different specializations, from botany, through zoology, to human physio-pathology research. In this regard, a challenging method for 3D imaging and quantitative analysis of collagenous tissues has spread in recent years: it is based on the unique characteristics of synchrotron radiation phase-contrast microTomography (PhC-microCT). In this review, the focus has been placed on the research based on the exploitation of synchrotron PhC-microCT for the investigation of collagenous tissue physio-pathologies from solely human samples. Collagen tissues' elasto-mechanic role bonds it to the morphology of the site it is extracted from, which could weaken the results coming from animal experimentations. Encouraging outcomes proved this technique to be suitable to access and quantify human collagenous tissues and persuaded different researchers to approach it. A brief mention was also dedicated to the results obtained on collagenous tissues using new and promising high-resolution phase-contrast tomographic laboratory-based setups, which will certainly represent the real step forward in the diffusion of this relatively young imaging technique.
Collapse
Affiliation(s)
- Michele Furlani
- Department DISCO, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy;
| | - Nicole Riberti
- Neuroscience Imaging and Clinical Sciences Department, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Maria Laura Gatto
- Department DIISM, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy;
| | - Alessandra Giuliani
- Department DISCO, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy;
| |
Collapse
|
7
|
Human cochlear microstructures at risk of electrode insertion trauma, elucidated in 3D with contrast-enhanced microCT. Sci Rep 2023; 13:2191. [PMID: 36750646 PMCID: PMC9905077 DOI: 10.1038/s41598-023-29401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Cochlear implant restores hearing loss through electrical stimulation of the hearing nerve from within the cochlea. Unfortunately, surgical implantation of this neuroprosthesis often traumatizes delicate intracochlear structures, resulting in loss of residual hearing and compromising hearing in noisy environments and appreciation of music. To avoid cochlear trauma, insertion techniques and devices have to be adjusted to the cochlear microanatomy. However, existing techniques were unable to achieve a representative visualization of the human cochlea: classical histology damages the tissues and lacks 3D perspective; standard microCT fails to resolve the cochlear soft tissues; and previously used X-ray contrast-enhancing staining agents are destructive. In this study, we overcame these limitations by performing contrast-enhanced microCT imaging (CECT) with a novel polyoxometalate staining agent Hf-WD POM. With Hf-WD POM-based CECT, we achieved nondestructive, high-resolution, simultaneous, 3D visualization of the mineralized and soft microstructures in fresh-frozen human cochleae. This enabled quantitative analysis of the true intracochlear dimensions and led to anatomical discoveries, concerning surgically-relevant microstructures: the round window membrane, the Rosenthal's canal and the secondary spiral lamina. Furthermore, we demonstrated that Hf-WD POM-based CECT enables quantitative assessment of these structures as well as their trauma.
Collapse
|
8
|
Optical Coherence Tomography-Based Atlas of the Human Cochlear Hook Region. J Clin Med 2022; 12:jcm12010238. [PMID: 36615042 PMCID: PMC9820872 DOI: 10.3390/jcm12010238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Advancements in intracochlear diagnostics, as well as prosthetic and regenerative inner ear therapies, rely on a good understanding of cochlear microanatomy. The human cochlea is very small and deeply embedded within the densest skull bone, making nondestructive visualization of its internal microstructures extremely challenging. Current imaging techniques used in clinical practice, such as MRI and CT, fall short in their resolution to visualize important intracochlear landmarks, and histological analysis of the cochlea cannot be performed on living patients without compromising their hearing. Recently, optical coherence tomography (OCT) has been shown to be a promising tool for nondestructive micrometer resolution imaging of the mammalian inner ear. Various studies performed on human cadaveric tissue and living animals demonstrated the ability of OCT to visualize important cochlear microstructures (scalae, organ of Corti, spiral ligament, and osseous spiral lamina) at micrometer resolution. However, the interpretation of human intracochlear OCT images is non-trivial for researchers and clinicians who are not yet familiar with this novel technology. In this study, we present an atlas of intracochlear OCT images, which were acquired in a series of 7 fresh and 10 fresh-frozen human cadaveric cochleae through the round window membrane and describe the qualitative characteristics of visualized intracochlear structures. Likewise, we describe several intracochlear abnormalities, which could be detected with OCT and are relevant for clinical practice.
Collapse
|
9
|
Mueller F, Hermann J, Weber S, O'Toole Bom Braga G, Topsakal V. Image-Based Planning of Minimally Traumatic Inner Ear Access for Robotic Cochlear Implantation. Front Surg 2021; 8:761217. [PMID: 34901143 PMCID: PMC8655094 DOI: 10.3389/fsurg.2021.761217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: During robotic cochlear implantation, an image-guided robotic system provides keyhole access to the scala tympani of the cochlea to allow insertion of the cochlear implant array. To standardize minimally traumatic robotic access to the cochlea, additional hard and soft constraints for inner ear access were proposed during trajectory planning. This extension of the planning strategy aims to provide a trajectory that preserves the anatomical and functional integrity of critical intra-cochlear structures during robotic execution and allows implantation with minimal insertion angles and risk of scala deviation. Methods: The OpenEar dataset consists of a library with eight three-dimensional models of the human temporal bone based on computed tomography and micro-slicing. Soft constraints for inner ear access planning were introduced that aim to minimize the angle of cochlear approach, minimize the risk of scala deviation and maximize the distance to critical intra-cochlear structures such as the osseous spiral lamina. For all cases, a solution space of Pareto-optimal trajectories to the round window was generated. The trajectories satisfy the hard constraints, specifically the anatomical safety margins, and optimize the aforementioned soft constraints. With user-defined priorities, a trajectory was parameterized and analyzed in a virtual surgical procedure. Results: In seven out of eight cases, a solution space was found with the trajectories safely passing through the facial recess. The solution space was Pareto-optimal with respect to the soft constraints of the inner ear access. In one case, the facial recess was too narrow to plan a trajectory that would pass the nerves at a sufficient distance with the intended drill diameter. With the soft constraints introduced, the optimal target region was determined to be in the antero-inferior region of the round window membrane. Conclusion: A trend could be identified that a position between the antero-inferior border and the center of the round window membrane appears to be a favorable target position for cochlear tunnel-based access through the facial recess. The planning concept presented and the results obtained therewith have implications for planning strategies for robotic surgical procedures to the inner ear that aim for minimally traumatic cochlear access and electrode array implantation.
Collapse
Affiliation(s)
- Fabian Mueller
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Jan Hermann
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Stefan Weber
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | | | - Vedat Topsakal
- Department of Otorhinolaryngology, Head and Neck Surgery, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
10
|
Synchrotron Radiation-Based Reconstruction of the Human Spiral Ganglion: Implications for Cochlear Implantation. Ear Hear 2021; 41:173-181. [PMID: 31008733 DOI: 10.1097/aud.0000000000000738] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To three-dimensionally reconstruct Rosenthal's canal (RC) housing the human spiral ganglion (SG) using synchrotron radiation phase-contrast imaging (SR-PCI). Straight cochlear implant electrode arrays were inserted to better comprehend the electro-cochlear interface in cochlear implantation (CI). DESIGN SR-PCI was used to reconstruct the human cochlea with and without cadaveric CI. Twenty-eight cochleae were volume rendered, of which 12 underwent cadaveric CI with a straight electrode via the round window (RW). Data were input into the 3D Slicer software program and anatomical structures were modeled using a threshold paint tool. RESULTS The human RC and SG were reproduced three-dimensionally with artefact-free imaging of electrode arrays. The anatomy of the SG and its relationship to the sensory organ (Corti) and soft and bony structures were assessed. CONCLUSIONS SR-PCI and computer-based three-dimensional reconstructions demonstrated the relationships among implanted electrodes, angular insertion depths, and the SG for the first time in intact, unstained, and nondecalcified specimens. This information can be used to assess stimulation strategies and future electrode designs, as well as create place-frequency maps of the SG for optimal stimulation strategies of the human auditory nerve in CI.
Collapse
|
11
|
Three-Dimensional Modeling and Measurement of the Human Cochlear Hook Region: Considerations for Tonotopic Mapping. Otol Neurotol 2021; 42:e658-e665. [PMID: 34111048 DOI: 10.1097/mao.0000000000003065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Measuring the length of the basilar membrane (BM) in the cochlear hook region will result in improved accuracy of cochlear duct length (CDL) measurements. BACKGROUND Cochlear implant pitch mapping is generally performed in a patient independent approach, which has been shown to result in place-pitch mismatches. In order to customize cochlear implant pitch maps, accurate CDL measurements must be obtained. CDL measurements generally begin at the center of the round window (RW) and ignore the basal-most portion of the BM in the hook region. Measuring the size and morphology of the BM in the hook region can improve CDL measurements and our understanding of cochlear tonotopy. METHODS Ten cadaveric human cochleae underwent synchrotron radiation phase-contrast imaging. The length of the BM through the hook region and CDL were measured. Two different CDL measurements were obtained for each sample, with starting points at the center of the RW (CDLRW) and the basal-most tip of the BM (CDLHR). Regression analysis was performed to relate CDLRW to CDLHR. A three-dimensional polynomial model was determined to describe the average BM hook region morphology. RESULTS The mean CDLRW value was 33.03 ± 1.62 mm, and the mean CDLHR value was 34.68 ± 1.72 mm. The following relationship was determined between CDLRW and CDLHR: CDLHR = 1.06(CDLRW)-0.26 (R2 = 0.99). CONCLUSION The length and morphology of the hook region was determined. Current measurements underestimate CDL in the hook region and can be corrected using the results herein.
Collapse
|
12
|
A Micro-Computed Tomography Study of Round Window Anatomy and Implications for Atraumatic Cochlear Implant Insertion. Otol Neurotol 2021; 42:327-334. [PMID: 33290359 DOI: 10.1097/mao.0000000000002924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
HYPOTHESIS The goal of this study was to interrogate high-resolution three-dimensional reconstructions of round window anatomy to illustrate and characterize structural variability with implications for atraumatic cochlear implant insertion. BACKGROUND Cochlear implants are increasingly used to improve sound detection in patients with substantial residual hearing. However, traumatic cochlear implant insertion through the round window involving upward deviation of the electrode into the spiral ligament, basilar membrane, and osseous spiral lamina, medial impaction on the modiolus, or interscalar excursion into the scala vestibuli are associated with lower rates of hearing preservation and poorer speech perception.Successful atraumatic insertion is dependent on an anatomical understanding of the middle and inner ear. The round window bony niche lacks distinct demonstrable anatomical landmarks for the position of the round window membrane, and there is limited guidance on the amount of bony overhang that can be safely drilled away. A greater understanding of the anatomical variation around the round window could enhance treatment efficacy. METHODS Fourteen human cadaver temporal bones were imaged using microcomputed tomography. Resulting scans were digitally reconstructed, segmented, and measured. RESULTS Round window niche walls vary substantially in size and projection. Round window average short diameter measured 1.30 mm (range 1.07-1.44), and is limited by the crista fenestrae at the inferoanterior margin of the round window. Crista fenestrae size and morphology varied considerably. Reconstructions with solid and translucent panels are presented. CONCLUSION Anatomical heterogeneity should be considered in cochlear implant selection, drilling, and choice of insertion vector.
Collapse
|
13
|
Li H, Schart-Moren N, Rajan G, Shaw J, Rohani SA, Atturo F, Ladak HM, Rask-Andersen H, Agrawal S. Vestibular Organ and Cochlear Implantation-A Synchrotron and Micro-CT Study. Front Neurol 2021; 12:663722. [PMID: 33897611 PMCID: PMC8058461 DOI: 10.3389/fneur.2021.663722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Reports vary on the incidence of vestibular dysfunction and dizziness in patients following cochlear implantation (CI). Disequilibrium may be caused by surgery at the cochlear base, leading to functional disturbances of the vestibular receptors and endolymphatic duct system (EDS) which are located nearby. Here, we analyzed the three-dimensional (3D) anatomy of this region, aiming to optimize surgical approaches to limit damage to the vestibular organ. Material and Methods: A total of 22 fresh-frozen human temporal bones underwent synchrotron radiation phase-contrast imaging (SR-PCI). One temporal bone underwent micro-computed tomography (micro-CT) after fixation and staining with Lugol's iodine solution (I2KI) to increase tissue contrast. We used volume-rendering software to create 3D reconstructions and tissue segmentation that allowed precise assessment of anatomical relationships and topography. Macerated human ears belonging to the Uppsala collection were also used. Drilling and insertion of CI electrodes was performed with metric analyses of different trajectories. Results and Conclusions: SR-PCI and micro-CT imaging demonstrated the complex 3D anatomy of the basal region of the human cochlea, vestibular apparatus, and EDS. Drilling of a cochleostomy may disturb vestibular organ function by injuring the endolymphatic space and disrupting fluid barriers. The saccule is at particular risk due to its proximity to the surgical area and may explain immediate and long-term post-operative vertigo. Round window insertion may be less traumatic to the inner ear, however it may affect the vestibular receptors.
Collapse
Affiliation(s)
- Hao Li
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Nadine Schart-Moren
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
- Section of Otolaryngology, Head and Neck Surgery, Uppsala University Hospital, Uppsala, Sweden
| | - Gunesh Rajan
- Department of Otolaryngology, Head & Neck Surgery, Luzerner Kantonsspital, Lucerne, Switzerland
- Department of Otolaryngology, Head & Neck Surgery, Division of Surgery, Medical School, University of Western Australia, Perth, WA, Australia
| | - Jeremy Shaw
- Centre for Microscopy, Characterization and Analysis, Perth, WA, Australia
| | - Seyed Alireza Rohani
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
| | - Francesca Atturo
- Department of Otolaryngology, University of Sapienza, Rome, Italy
| | - Hanif M. Ladak
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
- Department of Medical Biophysics and Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Sumit Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
- Department of Medical Biophysics and Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| |
Collapse
|
14
|
Abstract
BACKGROUND Incus necrosis is a common complication following stapes surgery and is associated with impaired microcirculation. The objective of this study was to investigate the vascular anatomy of the human incus by using light microscopy, micro-computed tomography (micro-CT), and synchrotron phase-contrast imaging (SR-PCI) for a novel three-dimensional (3D) analysis of the middle ear, mucosal folds, major vascular pathways, and intraosseous vascular bone channels. METHODS One-hundred-and-fifty temporal bones from the Uppsala collection were analyzed under light microscopy. Twenty temporal bones underwent high-resolution micro-CT scanning, and an additional seven specimens underwent SR-PCI at the Canadian Lightsource in Saskatoon, Canada. One of these specimens was from an individual who had undergone stapes surgery. Data were processed with volume-rendering software to create 3D reconstructions using scalar opacity mapping for bone transparency, cropping, and soft tissue analyses. RESULTS Micro-CT and SR-PCI with 3D rendering revealed the extensive vascular plexus within the un-decalcified incus bone communicating with the exterior surface. The relationship between the vessels, lenticular process, and incudostapedial joint were clearly observed. SR-PCI allowed for histologic-level detail while preserving the specimen and its 3D relationships. CONCLUSION SR-PCI with 3D reconstructions confirmed the main vascular supply to the lenticular process along the intraosseous lenticular vessels. This is the first synchrotron analysis of a patient having undergone stapes surgery, and it suggests that incus necrosis associated with stapes surgery may be caused by a disruption of the lenticular blood flow induced by the prosthesis loop, and not by strangulation of mucosal vessels as has been previously described.
Collapse
|
15
|
Raufer S, Idoff C, Zosuls A, Marino G, Blanke N, Bigio IJ, O'Malley JT, Burgess BJ, Nadol JB, Guinan JJ, Nakajima HH. Anatomy of the Human Osseous Spiral Lamina and Cochlear Partition Bridge: Relevance for Cochlear Partition Motion. J Assoc Res Otolaryngol 2020; 21:171-182. [PMID: 32166603 DOI: 10.1007/s10162-020-00748-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/20/2020] [Indexed: 11/29/2022] Open
Abstract
The classic view of cochlear partition (CP) motion, generalized to be for all mammals, was derived from basal-turn measurements in laboratory animals. Recently, we reported motion of the human CP in the cochlear base that differs substantially from the classic view. We described a human soft tissue "bridge" (non-existent in the classic view) between the osseous spiral lamina (OSL) and basilar membrane (BM), and showed how OSL and bridge move in response to sound. Here, we detail relevant human anatomy to better understand the relationship between form and function. The bridge and BM have similar widths that increase linearly from base to apex, whereas the OSL width decreases from base to apex, leading to an approximately constant total CP width throughout the cochlea. The bony three-dimensional OSL microstructure, reconstructed from unconventionally thin, 2-μm histological sections, revealed thin, radially wide OSL plates with pores that vary in size, extent, and distribution with cochlear location. Polarized light microscopy revealed collagen fibers in the BM that spread out medially through the bridge to connect to the OSL. The long width and porosity of the OSL may explain its considerable bending flexibility. The similarity of BM and bridge widths along the cochlea, both containing continuous collagen fibers, may make them a functional unit and allow maximum CP motion near the bridge-BM boundary, as recently described. These anatomical findings may help us better understand the motion of the structures surrounding the organ of Corti and how they shape the input to the cochlear sensory mechanism.
Collapse
Affiliation(s)
- Stefan Raufer
- Massachusetts Eye and Ear, Boston, MA, 02114, USA. .,Speech and Hearing Bioscience and Technology Program, Harvard Medical School, Boston, MA, 02115, USA. .,Medizinische Hochschule Hannover, Klinik für Hals-Nasen-Ohrenheilkunde, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Cornelia Idoff
- Massachusetts Eye and Ear, Boston, MA, 02114, USA.,Faculty of Medicine and Health Sciences, Linköping University, 58183, Linköping, Sweden
| | | | | | - Nathan Blanke
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Irving J Bigio
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Jennifer T O'Malley
- Massachusetts Eye and Ear, Boston, MA, 02114, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, 02115, USA
| | - Barbara J Burgess
- Massachusetts Eye and Ear, Boston, MA, 02114, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, 02115, USA
| | - Joseph B Nadol
- Massachusetts Eye and Ear, Boston, MA, 02114, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, 02115, USA
| | - John J Guinan
- Massachusetts Eye and Ear, Boston, MA, 02114, USA.,Speech and Hearing Bioscience and Technology Program, Harvard Medical School, Boston, MA, 02115, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, 02115, USA
| | - Hideko H Nakajima
- Massachusetts Eye and Ear, Boston, MA, 02114, USA.,Speech and Hearing Bioscience and Technology Program, Harvard Medical School, Boston, MA, 02115, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
16
|
Rohani SA, Allen D, Gare B, Zhu N, Agrawal S, Ladak H. High-resolution imaging of the human incudostapedial joint using synchrotron-radiation phase-contrast imaging. J Microsc 2020; 277:61-70. [PMID: 31989597 DOI: 10.1111/jmi.12864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 12/18/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
The incudostapedial joint (ISJ) of the middle ear is important for proper transmission of sound energy to the cochlea. Recently, the biomechanics of the ISJ have been investigated using finite-element (FE) modelling, using simplified geometry. The objective of the present study was to investigate the feasibility of synchrotron-radiation phase-contrast imaging (SR-PCI) in visualising the ISJ ultrastructure. Three human cadaveric ISJs were dissected and scanned using SR-PCI at 0.9 µm isotropic voxel size. One of the samples was previously scanned at 9 µm voxel size. The images were visually compared and contrast-to-noise ratios (CNRs) were calculated (of both bone and soft tissues) for quantitative comparisons. The ISJ ultrastructure as well as adjacent bone and soft tissues were clearly visible in images with a 0.9 µm voxel size. The CNRs of the 0.9 µm images were relatively lower than those of the 9 µm scans, while the ratio of bone to soft tissue CNRs were higher, indicating better discernibility of bone from soft tissue in the 0.9 µm scans. This study was the first known attempt to image the ISJ ultrastructure using an SR-PCI scanner at submicron voxel size and results suggest that this method was successful. Future studies are needed to optimise the contrast and test the feasibility of imaging the ISJ in situ. LAY DESCRIPTION: The human middle ear consists of the eardrum, three small bones (the malleus, incus and stapes) and two joints connecting the bones (the incudostapedial joint and the incudomallear joint). The role of the middle ear is to amplify and transfer sound energy to the cochlea, the end organ of hearing. The incudostapedial joint (ISJ) of the middle ear is a synovial joint which is important for proper transmission of sound energy to the cochlea. Similar to other synovial joints it consists of meniscus, fluid and articulating surfaces. Recently, the biomechanics of the ISJ have been investigated using computational models, using grossly simplified geometry. Synchrotron radiation phase contrast imaging (SR-PCI) is a high-resolution imaging technique used to visualise small structures in three dimensions. The objective of the present study was to investigate the feasibility of using SR-PCI in visualising the ISJ ultrastructure. Three human cadaveric ISJs were dissected and scanned using SR-PCI at 0.9 µm isotropic voxel size. One of the samples was previously scanned at 9 µm voxel size. The images were both qualitatively and quantitatively compared. This study was the first known attempt to image the ISJ ultrastructure using an SR-PCI scanner at submicron voxel size and results suggest that this method was successful. Future studies are needed to optimise the contrast and feasibility of imaging the ISJ in situ.
Collapse
Affiliation(s)
- S A Rohani
- Department of Otolaryngology - Head and Neck Surgery, Western University, London, Ontario, Canada
| | - D Allen
- Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
| | - B Gare
- Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
| | - N Zhu
- Bio-Medical Imaging and Therapy Facility, Canadian Light Source Inc., University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - S Agrawal
- Department of Otolaryngology - Head and Neck Surgery, Western University, London, Ontario, Canada
| | - H Ladak
- Department of Otolaryngology - Head and Neck Surgery, Western University, London, Ontario, Canada.,Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada
| |
Collapse
|
17
|
High-resolution Imaging of the Human Cochlea through the Round Window by means of Optical Coherence Tomography. Sci Rep 2019; 9:14271. [PMID: 31582808 PMCID: PMC6776619 DOI: 10.1038/s41598-019-50727-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
The human cochlea is deeply embedded in the temporal bone and surrounded by a thick otic capsule, rendering its internal structure inaccessible for direct visualization. Clinical imaging techniques fall short of their resolution for imaging of the intracochlear structures with sufficient detail. As a result, there is a lack of knowledge concerning best practice for intracochlear therapy placement, such as cochlear implantation. In the past decades, optical coherence tomography (OCT) has proven valuable for non-invasive, high-resolution, cross-sectional imaging of tissue microstructure in various fields of medicine, including ophthalmology, cardiology and dermatology. There is an upcoming interest for OCT imaging of the cochlea, which so far was mostly carried out in small animals. In this temporal bone study, we focused on high-resolution imaging of the human cochlea. The cochlea was approached through mastoidectomy and posterior tympanotomy, both standard surgical procedures. A commercially available spectral-domain OCT imaging system was used to obtain high-resolution images of the cochlear hook region through the intact round window membrane in four cadaveric human temporal bones. We discuss the qualitative and quantitative characteristics of intracochlear structures on OCT images and their importance for cochlear implant surgery.
Collapse
|
18
|
Effects of Various Trajectories on Tissue Preservation in Cochlear Implant Surgery: A Micro-Computed Tomography and Synchrotron Radiation Phase-Contrast Imaging Study. Ear Hear 2019; 40:393-400. [PMID: 29952804 DOI: 10.1097/aud.0000000000000624] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The purpose of this study was to evaluate the three-dimensional (3D) anatomy and potential damage to the hook region of the human cochlea following various trajectories at cochlear implantation (CI). The goal was to determine which of the approaches can avoid lesions to the soft tissues, including the basilar membrane and its suspension to the lateral wall. Currently, there is increased emphasis on conservation of inner ear structures, even in nonhearing preservation CI surgery. DESIGN Micro-computed tomography and various CI approaches were made in an archival collection of macerated and freshly fixed human temporal bones. Furthermore, synchrotron radiation phase-contrast imaging was used to reproduce the soft tissues. The 3D anatomy was investigated using bony and soft tissue algorithms, and influences on inner ear structures were examined. RESULTS Micro-computed tomography with 3D rendering demonstrated the topography of the round window (RW) and osseous spiral laminae, while synchrotron imaging allowed reproduction of soft tissues such as the basilar membrane and its suspension around the RW membrane. Anterior cochleostomies and anteroinferior cochleostomies invariably damaged the intracochlear soft tissues while inferior cochleostomies sporadically left inner ear structures unaffected. CONCLUSIONS Results suggest that cochleostomy approaches often traumatize the soft tissues at the hook region at CI surgery. For optimal structural preservation, the RW approach is, therefore, recommended.
Collapse
|
19
|
Mei X, Atturo F, Wadin K, Larsson S, Agrawal S, Ladak HM, Li H, Rask-Andersen H. Human inner ear blood supply revisited: the Uppsala collection of temporal bone-an international resource of education and collaboration. Ups J Med Sci 2018; 123:131-142. [PMID: 30204028 PMCID: PMC6198224 DOI: 10.1080/03009734.2018.1492654] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The Uppsala collection of human temporal bones and molds is a unique resource for education and international research collaboration. Micro-computerized tomography (micro-CT) and synchrotron imaging are used to investigate the complex anatomy of the inner ear. Impaired microcirculation is etiologically linked to various inner ear disorders, and recent developments in inner ear surgery promote examination of the vascular system. Here, for the first time, we present three-dimensional (3D) data from investigations of the major vascular pathways and corresponding bone channels. METHODS We used the archival Uppsala collection of temporal bones and molds consisting of 324 inner ear casts and 113 macerated temporal bones. Micro-CT was used to investigate vascular bone channels, and 26 fresh human temporal bones underwent synchrotron radiation phase contrast imaging (SR-PCI). Data were processed by volume-rendering software to create 3D reconstructions allowing orthogonal sectioning, cropping, and soft tissue analyses. RESULTS Micro-CT with 3D rendering was superior in reproducing the anatomy of the vascular bone channels, while SR-PCI replicated soft tissues. Arterial bone channels were traced from scala vestibuli (SV) arterioles to the fundus, cochlea, and vestibular apparatus. Drainage routes along the aqueducts were examined. CONCLUSION Human inner ear vessels are difficult to study due to the adjoining hard bone. Micro-CT and SR-PCI with 3D reconstructions revealed large portions of the micro-vascular system in un-decalcified specimens. The results increase our understanding of the organization of the vascular system in humans and how altered microcirculation may relate to inner ear disorders. The findings may also have surgical implications.
Collapse
Affiliation(s)
- Xueshuang Mei
- Department of Surgical Sciences, Section of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
- Department of Otolaryngology, Peking University Shenzhen Hospital, P.R. China
| | - Francesca Atturo
- Department of Surgical Sciences, Section of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
| | - Karin Wadin
- Department of Diagnostic Radiology, Uppsala University Hospital, Uppsala, Sweden
| | - Sune Larsson
- Department of Surgical Sciences, Section of Orthopedics, Uppsala University Hospital, Sweden
| | - Sumit Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, Canada
| | - Hanif M. Ladak
- Department of Otolaryngology-Head and Neck Surgery, Western University, Canada
- Department of Medical Biophysics and Department of Electrical and Computer Engineering, Western University, Canada
| | - Hao Li
- Department of Surgical Sciences, Section of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Section of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
- CONTACT Helge Rask-Andersen Department of Surgical Sciences, Section of Otolaryngology, Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| |
Collapse
|
20
|
Iyer JS, Zhu N, Gasilov S, Ladak HM, Agrawal SK, Stankovic KM. Visualizing the 3D cytoarchitecture of the human cochlea in an intact temporal bone using synchrotron radiation phase contrast imaging. BIOMEDICAL OPTICS EXPRESS 2018; 9:3757-3767. [PMID: 30338153 DOI: 10.1364/boe.9.00375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 05/21/2023]
Abstract
The gold standard method for visualizing the pathologies underlying human sensorineural hearing loss has remained post-mortem histology for over 125 years, despite awareness that histological preparation induces severe artifacts in biological tissue. Historically, the transition from post-mortem assessment to non-invasive clinical biomedical imaging in living humans has revolutionized diagnosis and treatment of disease; however, innovation in non-invasive techniques for cellular-level intracochlear imaging in humans has been difficult due to the cochlea's small size, complex 3D configuration, fragility, and deep encasement within bone. Here we investigate the ability of synchrotron radiation-facilitated X-ray absorption and phase contrast imaging to enable visualization of sensory cells and nerve fibers in the cochlea's sensory epithelium in situ in 3D intact, non-decalcified, unstained human temporal bones. Our findings show that this imaging technique resolves the bone-encased sensory epithelium's cytoarchitecture with unprecedented levels of cellular detail for an intact, unstained specimen, and is capable of distinguishing between healthy and damaged epithelium. All analyses were performed using commercially available software that quickly reconstructs and facilitates 3D manipulation of massive data sets. Results suggest that synchrotron radiation phase contrast imaging has the future potential to replace histology as a gold standard for evaluating intracochlear structural integrity in human specimens, and motivate further optimization for translation to the clinic.
Collapse
Affiliation(s)
- Janani S Iyer
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
- Department of Otolaryngology, Harvard Medical School, 25 Shattuck St, Boston, MA, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard University Graduate School of Arts and Sciences, 1350 Massachusetts Ave, Cambridge, MA, USA
| | - Ning Zhu
- Canadian Light Source Inc., Saskatoon, Saskatchewan, Canada
| | - Sergei Gasilov
- Canadian Light Source Inc., Saskatoon, Saskatchewan, Canada
| | - Hanif M Ladak
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
- Biomedical Engineering Graduate Program, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
| | - Sumit K Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
- Biomedical Engineering Graduate Program, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
| | - Konstantina M Stankovic
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
- Department of Otolaryngology, Harvard Medical School, 25 Shattuck St, Boston, MA, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard University Graduate School of Arts and Sciences, 1350 Massachusetts Ave, Cambridge, MA, USA
| |
Collapse
|
21
|
Iyer JS, Zhu N, Gasilov S, Ladak HM, Agrawal SK, Stankovic KM. Visualizing the 3D cytoarchitecture of the human cochlea in an intact temporal bone using synchrotron radiation phase contrast imaging. BIOMEDICAL OPTICS EXPRESS 2018; 9:3757-3767. [PMID: 30338153 PMCID: PMC6191620 DOI: 10.1364/boe.9.003757] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 05/21/2023]
Abstract
The gold standard method for visualizing the pathologies underlying human sensorineural hearing loss has remained post-mortem histology for over 125 years, despite awareness that histological preparation induces severe artifacts in biological tissue. Historically, the transition from post-mortem assessment to non-invasive clinical biomedical imaging in living humans has revolutionized diagnosis and treatment of disease; however, innovation in non-invasive techniques for cellular-level intracochlear imaging in humans has been difficult due to the cochlea's small size, complex 3D configuration, fragility, and deep encasement within bone. Here we investigate the ability of synchrotron radiation-facilitated X-ray absorption and phase contrast imaging to enable visualization of sensory cells and nerve fibers in the cochlea's sensory epithelium in situ in 3D intact, non-decalcified, unstained human temporal bones. Our findings show that this imaging technique resolves the bone-encased sensory epithelium's cytoarchitecture with unprecedented levels of cellular detail for an intact, unstained specimen, and is capable of distinguishing between healthy and damaged epithelium. All analyses were performed using commercially available software that quickly reconstructs and facilitates 3D manipulation of massive data sets. Results suggest that synchrotron radiation phase contrast imaging has the future potential to replace histology as a gold standard for evaluating intracochlear structural integrity in human specimens, and motivate further optimization for translation to the clinic.
Collapse
Affiliation(s)
- Janani S. Iyer
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
- Department of Otolaryngology, Harvard Medical School, 25 Shattuck St, Boston, MA, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard University Graduate School of Arts and Sciences, 1350 Massachusetts Ave, Cambridge, MA, USA
| | - Ning Zhu
- Canadian Light Source Inc., Saskatoon, Saskatchewan, Canada
| | - Sergei Gasilov
- Canadian Light Source Inc., Saskatoon, Saskatchewan, Canada
| | - Hanif M. Ladak
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
- Biomedical Engineering Graduate Program, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
| | - Sumit K. Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
- Biomedical Engineering Graduate Program, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
| | - Konstantina M. Stankovic
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
- Department of Otolaryngology, Harvard Medical School, 25 Shattuck St, Boston, MA, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard University Graduate School of Arts and Sciences, 1350 Massachusetts Ave, Cambridge, MA, USA
| |
Collapse
|