1
|
Deane KD, Holers VM, Emery P, Mankia K, El-Gabalawy H, Sparks JA, Costenbader KH, Schett G, van der Helm-van Mil A, van Schaardenburg D, Thomas R, Cope AP. Therapeutic interception in individuals at risk of rheumatoid arthritis to prevent clinically impactful disease. Ann Rheum Dis 2025; 84:14-28. [PMID: 39874228 DOI: 10.1136/ard-2023-224211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Multiple clinical trials for rheumatoid arthritis (RA) prevention have been completed. Here, we set out to report on the lessons learnt from these studies. Researchers who conducted RA prevention trials shared the background, rationale, approach and outcomes and evaluated the lessons learnt to inform the next generation of RA prevention trials. Individuals at risk of RA can be identified through population screening, referrals to musculoskeletal programmes and by recognition of arthralgia suspicious for RA. Clinical trials in individuals at risk for future clinical RA have demonstrated that limited courses of corticosteroids, atorvastatin and hydroxychloroquine do not alter incidence rates of clinical RA; however, rituximab delays clinical RA onset, and methotrexate has transient effects in individuals who are anticitrullinated protein antibody-positive with subclinical joint inflammation identified by imaging. Abatacept delays clinical RA onset but does not fully prevent onset of RA after treatment cessation. Additionally, subclinical joint inflammation and symptoms appear responsive to interventions such as methotrexate and abatacept. To advance prevention, next steps include building networks of individuals at risk for RA, to improve risk stratification for future RA and to understand the biological mechanisms of RA development, including potential endotypes of disease, which can be targeted for prevention, thus adopting a more precision-based approach. Future trials should focus on interceptions aimed at preventing clinical RA onset and which treat existing symptoms and imaging-defined subclinical inflammation. These trials may include advanced designs (eg, adaptive) and should be combined with mechanistic studies to further define pathophysiological drivers of disease development.
Collapse
Affiliation(s)
- Kevin D Deane
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Kulveer Mankia
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Hani El-Gabalawy
- Departments of Medicine and Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jeffrey A Sparks
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA. https://twitter.com/@jeffsparks
| | - Karen H Costenbader
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA; Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Georg Schett
- Rheumatology, University of Erlangen, Erlangen, Germany
| | - Annette van der Helm-van Mil
- Rheumatology, Leiden University Medical Center, Leiden, The Netherlands; Rheumatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Ranjeny Thomas
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Andrew P Cope
- Academic Department of Rheumatology, Kings College London, London, UK.
| |
Collapse
|
2
|
O'Neil LJ, Alpízar-Rodríguez D, Deane KD. Rheumatoid Arthritis: The Continuum of Disease and Strategies for Prediction, Early Intervention, and Prevention. J Rheumatol 2024; 51:337-349. [PMID: 38224993 PMCID: PMC10984790 DOI: 10.3899/jrheum.2023-0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 01/17/2024]
Abstract
Rheumatoid arthritis (RA) is known to include a pre-RA stage that can be defined as the presence of familial or genetic risk factors, biomarker abnormalities (eg, anticitrullinated protein antibodies [ACPA]), symptoms, and even abnormal imaging findings prior to the development of the onset of clinical RA with inflammatory arthritis that is apparent on physical examination. Indeed, there are multiple completed or ongoing retrospective case-control as well as prospective observational studies to identify the key biologic drivers of disease. Further, building on the predictive ability of combinations of biomarkers, symptoms, and imaging for future RA, there are multiple clinical trials completed, underway, or in development to identify approaches that may prevent, delay, or ameliorate future clinical RA in at-risk individuals. Importantly, however, although an effective preventive intervention has not yet been identified, at-risk individuals are being increasingly identified in clinical care; this presents a challenge of how to manage these individuals in clinical practice. This review will discuss the current understanding of the biology and natural history of RA development, nomenclature, and current models for prediction of future RA, as well as evaluate the current and ongoing clinical prevention trials with the overall goal to provide insights into the challenges and opportunities in the field of RA prevention. Moreover, this review will provide up-to-date options for clinical management of individuals at risk for RA.
Collapse
Affiliation(s)
- Liam J O'Neil
- L.J. O'Neil, MD, MHSc, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Kevin D Deane
- K.D. Deane, MD, PhD, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
3
|
Cope AP, Jasenecova M, Vasconcelos JC, Filer A, Raza K, Qureshi S, D'Agostino MA, McInnes IB, Isaacs JD, Pratt AG, Fisher BA, Buckley CD, Emery P, Ho P, Buch MH, Ciurtin C, van Schaardenburg D, Huizinga T, Toes R, Georgiou E, Kelly J, Murphy C, Prevost AT. Abatacept in individuals at high risk of rheumatoid arthritis (APIPPRA): a randomised, double-blind, multicentre, parallel, placebo-controlled, phase 2b clinical trial. Lancet 2024; 403:838-849. [PMID: 38364839 DOI: 10.1016/s0140-6736(23)02649-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 02/18/2024]
Abstract
BACKGROUND Individuals with serum antibodies to citrullinated protein antigens (ACPA), rheumatoid factor, and symptoms, such as inflammatory joint pain, are at high risk of developing rheumatoid arthritis. In the arthritis prevention in the pre-clinical phase of rheumatoid arthritis with abatacept (APIPPRA) trial, we aimed to evaluate the feasibility, efficacy, and acceptability of treating high risk individuals with the T-cell co-stimulation modulator abatacept. METHODS The APIPPRA study was a randomised, double-blind, multicentre, parallel, placebo-controlled, phase 2b clinical trial done in 28 hospital-based early arthritis clinics in the UK and three in the Netherlands. Participants (aged ≥18 years) at risk of rheumatoid arthritis positive for ACPA and rheumatoid factor with inflammatory joint pain were recruited. Exclusion criteria included previous episodes of clinical synovitis and previous use of corticosteroids or disease-modifying antirheumatic drugs. Participants were randomly assigned (1:1) using a computer-generated permuted block randomisation (block sizes of 2 and 4) stratified by sex, smoking, and country, to 125 mg abatacept subcutaneous injections weekly or placebo for 12 months, and then followed up for 12 months. Masking was achieved by providing four kits (identical in appearance and packaging) with pre-filled syringes with coded labels of abatacept or placebo every 3 months. The primary endpoint was the time to development of clinical synovitis in three or more joints or rheumatoid arthritis according to American College of Rheumatology and European Alliance of Associations for Rheumatology 2010 criteria, whichever was met first. Synovitis was confirmed by ultrasonography. Follow-up was completed on Jan 13, 2021. All participants meeting the intention-to-treat principle were included in the analysis. This trial was registered with EudraCT (2013-003413-18). FINDINGS Between Dec 22, 2014, and Jan 14, 2019, 280 individuals were evaluated for eligibility and, of 213 participants, 110 were randomly assigned to abatacept and 103 to placebo. During the treatment period, seven (6%) of 110 participants in the abatacept group and 30 (29%) of 103 participants in the placebo group met the primary endpoint. At 24 months, 27 (25%) of 110 participants in the abatacept group had progressed to rheumatoid arthritis, compared with 38 (37%) of 103 in the placebo group. The estimated proportion of participants remaining arthritis-free at 12 months was 92·8% (SE 2·6) in the abatacept group and 69·2% (4·7) in the placebo group. Kaplan-Meier arthritis-free survival plots over 24 months favoured abatacept (log-rank test p=0·044). The difference in restricted mean survival time between groups was 53 days (95% CI 28-78; p<0·0001) at 12 months and 99 days (95% CI 38-161; p=0·0016) at 24 months in favour of abatacept. During treatment, abatacept was associated with improvements in pain scores, functional wellbeing, and quality-of-life measurements, as well as low scores of subclinical synovitis by ultrasonography, compared with placebo. However, the effects were not sustained at 24 months. Seven serious adverse events occurred in the abatacept group and 11 in the placebo group, including one death in each group deemed unrelated to treatment. INTERPRETATION Therapeutic intervention during the at-risk phase of rheumatoid arthritis is feasible, with acceptable safety profiles. T-cell co-stimulation modulation with abatacept for 12 months reduces progression to rheumatoid arthritis, with evidence of sustained efficacy beyond the treatment period, and with no new safety signals. FUNDING Bristol Myers Squibb.
Collapse
Affiliation(s)
- Andrew P Cope
- Centre for Rheumatic Diseases, King's College London, London, UK.
| | | | - Joana C Vasconcelos
- Nightingale-Saunders Clinical Trials & Epidemiology Unit, King's College London, London, UK
| | - Andrew Filer
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Karim Raza
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Sumera Qureshi
- Centre for Rheumatic Diseases, King's College London, London, UK
| | - Maria Antonietta D'Agostino
- Division of Rheumatology, Fondazione Policlinico Universitario A Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Iain B McInnes
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - John D Isaacs
- Translational & Clinical Research Institute, Newcastle University and Musculoskeletal Unit, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Arthur G Pratt
- Translational & Clinical Research Institute, Newcastle University and Musculoskeletal Unit, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Benjamin A Fisher
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | | | - Paul Emery
- Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Pauline Ho
- Centre for Musculoskeletal Research, University of Manchester, Manchester, UK
| | - Maya H Buch
- Centre for Musculoskeletal Research, University of Manchester, Manchester, UK
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis, Division of Medicine, University College London, London, UK
| | - Dirkjan van Schaardenburg
- Amsterdam University Medical Centres, Reade, Amsterdam Rheumatology and Immunology Centre, Amsterdam, Netherlands
| | - Thomas Huizinga
- Department of Rheumatology, Leiden University Medical Centre, Leiden, Netherlands
| | - René Toes
- Department of Rheumatology, Leiden University Medical Centre, Leiden, Netherlands
| | | | - Joanna Kelly
- King's Clinical Trials Unit, King's College London, London, UK
| | - Caroline Murphy
- King's Clinical Trials Unit, King's College London, London, UK
| | - A Toby Prevost
- Nightingale-Saunders Clinical Trials & Epidemiology Unit, King's College London, London, UK
| |
Collapse
|
4
|
Zhang Y, Mei Y, Yu W, Guo M, Li B, Zhou H, Wang C, Du C. Association of indoor dampness indicators with rheumatic diseases/symptoms in older adults: A comparative cross-sectional study in Chongqing and Beijing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11633-11646. [PMID: 38221562 DOI: 10.1007/s11356-024-31971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Dampness is strongly associated with rheumatic diseases, which particularly affect the older adults. Tackling dampness is therefore important, especially given that climate change is expected to exacerbate rheumatic diseases; however, limited studies have compared the risk of rheumatic diseases in older adults based on humidity levels across different regions. To explore this, a comparative cross-sectional study was conducted to collect information on the residential characteristics, lifestyles, and health outcomes of 2000 individuals aged 60-74 years from Chongqing and Beijing. From this data, we tested for an association between six indoor dampness indicators and rheumatic related diseases/symptoms. The results showed that the risk values for joint pain were higher in Chongqing than in Beijing. Moreover, the risk of joint stiffness increased more strongly in Chongqing than in Beijing as the cumulative number of dampness exposure indicators increased. The key indoor dampness indicators affecting rheumatic diseases were different for Chongqing and Beijing. Overall, this study compared the risk of rheumatic diseases in older adults in the north and south of China because of dampness exposure and, from these, provided suggestions for modifying the indoor environments to prevent or reduce rheumatic symptoms.
Collapse
Affiliation(s)
- Yan Zhang
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China
- National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science and Technology), Chongqing University, Chongqing, 400045, China
| | - Yong Mei
- Institute of Defense Engineering, AMS, Beijing, 100036, China
| | - Wei Yu
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China.
- National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science and Technology), Chongqing University, Chongqing, 400045, China.
| | - Miao Guo
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China
- National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science and Technology), Chongqing University, Chongqing, 400045, China
| | - Baizhan Li
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China
- National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science and Technology), Chongqing University, Chongqing, 400045, China
| | - Haixia Zhou
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China
- National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science and Technology), Chongqing University, Chongqing, 400045, China
| | - Chenyang Wang
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China
- National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science and Technology), Chongqing University, Chongqing, 400045, China
| | - Chenqiu Du
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China
- National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science and Technology), Chongqing University, Chongqing, 400045, China
| |
Collapse
|