1
|
Wang S, Chen Z, Wang M, Zhang M, Zhang C, Huang T, Zhao Y, Xu Z. The feeding preference and bite response between Microtus fortis and Broussonetia papyrifera. FRONTIERS IN PLANT SCIENCE 2024; 15:1361311. [PMID: 39315380 PMCID: PMC11417685 DOI: 10.3389/fpls.2024.1361311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 08/21/2024] [Indexed: 09/25/2024]
Abstract
Introduction Broussonetia papyrifera is a dioecious plant that is rich in various metabolites and widely distribute in Asia. Microtus fortis is a rodent that often causes damage to crops, especially in the Dongting Lake region of China. There is a wide overlap in the distribution areas for the above species and the M. fortis feeds on the leaves of the B. papyrifera. Preliminary experiments have shown that the reproduction of M. fortis is inhibited after feeding on the leaves of the B. papyrifera. Methods In order to explore the potential of using B. papyrifera to develop botanical pesticides, we investigated the palatability and reactive substances. The feeding frequency of M. fortis on B. papyrifera leaves to that of on daily fodder and Carex brevicuspis that is the primary food for the wild population were compared. We also attempted to identify the responsive substances in B. papyrifera leaves that were bitten by M. fortis using metabolome analysis. Results In general, B. papyrifera leaves exhibited a stronger attraction to M. fortis. M. fortis foraged B. papyrifera leaves more frequently, and the intake was higher than that of the other two. Differential metabolites were screened by comparing normal leaves and leaves bitten by M. fortis, meanwhile with the intervention of clipped leaves. A total of 269 substances were screened, and many of these were involved in the biosynthesis of secondary metabolites, including terpenoids and alkaloids. These substances may be related to the defense mechanism of B. papyrifera against herbivores. Discussion These findings support further research examining animal-plant interactions and simultaneously provide insights into the utilisation of B. papyrifera resources and the management of rodents. The good palatability and the defense of B. papyrifera leaves suggest that they have the potential to contribute in development of plant rodenticide.
Collapse
Affiliation(s)
- Shuangye Wang
- School of Basic Medicine, Guiyang Healthcare Vocational University, Guiyang, Guizhou, China
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zihao Chen
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Mengxin Wang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Meiwen Zhang
- Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Chen Zhang
- Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Tian Huang
- Hunan Engineering Research Center of Ecological Environment lntelligent Monitoring and Disaster Prevention and Mitigation Technology in Dongting Lake Region, Hunan City University, Yiyang, Hunan, China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zhenggang Xu
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, Hunan, China
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
- Hunan Engineering Research Center of Ecological Environment lntelligent Monitoring and Disaster Prevention and Mitigation Technology in Dongting Lake Region, Hunan City University, Yiyang, Hunan, China
| |
Collapse
|
2
|
Glasson CR, Kinley RD, de Nys R, King N, Adams SL, Packer MA, Svenson J, Eason CT, Magnusson M. Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|