1
|
Wang S, Wang D, Bai Y, Zheng G, Han Y, Wang L, Hu J, Zhu H, Bai Y. Expression of Toll-like receptors and host defence peptides in the cecum of chicken challenged with Eimeria tenella. Parasite Immunol 2024; 46:e13022. [PMID: 38384176 DOI: 10.1111/pim.13022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
Chicken coccidiosis, caused by Eimeria protozoa, affects poultry farming. Toll-like receptors (TLRs) and host defence peptides (HDPs) help host innate immune responses to eliminate invading pathogens, but their roles in Eimeria tenella infection remain poorly understood. Herein, 14-day-old chickens were treated orally with 50,000 E. tenella oocysts and the cecum was dissected at different timepoints. mRNA expression of 10 chicken TLRs (chTLRs) and five HDPs was measured by quantitative real-time PCR. chTLR7 and chTLR15 were upregulated significantly at 3 h post-infection while other chTLRs were downregulated (p < .05). chTLR1a, chTLR1b, chTLR2b and chTLR4 peaked at 36 h post-infection, chTLR3, chTLR5 and chTLR15 peaked at 72 h post-infection and chTLR21 expression was highest among chTLRs, peaking at 48 h post-infection (p < 0.05). For HDPs, cathelicidin (CATH) 1 to 3 and B1 peaked at 48 h post-infection, liver-expressed antimicrobial peptide 2 peaked at 96 h post-infection, and CATH 2 expression was highest among HDPs. CATH2 and CATH3 were markedly upregulated at 3 h post-infection (p < .05). The results provide insight into innate immune molecules during E. tenella infection in chicken, and indicate that innate immune responses may mediate resistance to chicken coccidiosis.
Collapse
Affiliation(s)
- Song Wang
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Danni Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Yilin Bai
- School of Agricultural Science, Zhengzhou University, Zhengzhou, China
| | - Guijie Zheng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Yanhui Han
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Huili Zhu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Yueyu Bai
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| |
Collapse
|
2
|
Jiang X, Zhang X, Sun Y, Sun Z, Li X, Liu L. Effects of Salmonella Enteritidis infection on TLRs gene expression and microbial diversity in cecum of laying hens. Heliyon 2023; 9:e16414. [PMID: 37265619 PMCID: PMC10230204 DOI: 10.1016/j.heliyon.2023.e16414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Salmonella Enteritidis (SE) is an important foodborne pathogen primarily causing human disease through contaminated food and water. In the current study, to assess the effect of Salmonella Enteritidis infection on the immune system and the microbial diversity of cecum and oviduct in chickens, twelve 24-week-old SE-negative White Leghorn layers were randomly selected and divided into 2 groups. Chickens in the challenge group were orally inoculated with SE, and chickens in the control group received an equal amount of sterilized Phosphate Buffered Saline solution. Serum and tissue samples (cecum, oviduct, ovary, liver, spleen, and pancreas) were collected at 7 days and 14 days post-infection (dpi). Quantitative PCR was used to detect the expression of Toll-like receptors (TLRs) in the cecum, oviduct and ovary. To understand the influence of SE infection on the microbial profile of the cecum and oviduct, microbial community composition of the cecal contents and oviducal contents were analyzed through 16S rRNA sequencing. Results showed that SE infection caused damage to the digestive organs, reproductive organs, and immune organs in laying hens. The expression of TLR1a, TLR1b, TLR2, TLR4, TLR5, TLR7 and TLR15 in the cecum were induced, and the content of IFN-γ, TNF-α, IL-2 and IL-18 in serum increased after SE infection. The composition of the microbial community significantly changed in cecal content, the dominant phylum of Firmicutes increased, and Bacteroidetes decreased significantly. In the oviduct, the microbial diversity became complicated, the dominant bacteria Faecalibacterium was significantly increased, and Bacteroides was significantly decreased. This study investigated the effects of SE infection in laying hens, including host innate immunity, the expression of TLRs, and changes in the composition of microbes in the cecum and reproductive tract. Our results may provide a scientific basis for the Salmonella Enteritidis control in chicken, the maintenance of oviduct function, and the guarantee of clean egg production.
Collapse
Affiliation(s)
- Xintong Jiang
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiao Zhang
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yuqing Sun
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhongtao Sun
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xianyao Li
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Liying Liu
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
3
|
Xu W, Zhou X, Fang W, Chen X. Genetic diversity of toll-like receptor genes in the vulnerable Chinese egret (Egretta eulophotes). PLoS One 2020; 15:e0233714. [PMID: 32469968 PMCID: PMC7259618 DOI: 10.1371/journal.pone.0233714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/11/2020] [Indexed: 01/15/2023] Open
Abstract
Toll-like receptor (TLR) genes have recently been employed to assess genetic diversity, as they can be used to infer both demographic history and adaptation to environments with different pathogen pressure. Here, we sampled 120 individuals of the Chinese egret (Egretta eulophotes), a globally vulnerable species, from four breeding populations across China. We assessed the levels of genetic diversity, selection pressure, and population differentiation at seven TLR loci (TLR1LB, TLR2A, TLR3, TLR4, TLR5, TLR7, and TLR15). Using a variety of metrics (SNPs, heterozygosity, nucleotides, haplotypes), our analyses showed that genetic diversity was lower at 4 of the 7 TLR loci in the vulnerable Chinese egret compared to the more common little egret (Egretta garzetta). The selection test indicated TLRs, except for TLR5, were under purifying selection in TLR evolution, suggesting that low TLR genetic diversity in the Chinese egret may be caused by purifying selection. Moreover, analysis of molecular variance indicated low but significant population differentiation among four populations at all of the TLR loci in this egret. However, some comparisons based on fixation index analyses did not show significant population differentiation, and Bayesian clustering showed admixture. Our finding suggested that these four populations of the Chinese egret in China may be considered a single unit for conservation planning. These results, the new report of TLR genetic diversity in a long-distance migratory vulnerable Ardeid species, will provide fundamental TLR information for further studies on the conservation genetics of the Chinese egret and other Ardeids.
Collapse
Affiliation(s)
- Wei Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Xiaoping Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Wenzhen Fang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Xiaolin Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People’s Republic of China
| |
Collapse
|
4
|
Nawab A, An L, Wu J, Li G, Liu W, Zhao Y, Wu Q, Xiao M. Chicken toll-like receptors and their significance in immune response and disease resistance. Int Rev Immunol 2019; 38:284-306. [PMID: 31662000 DOI: 10.1080/08830185.2019.1659258] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Infectious diseases are a major challenge for the poultry industry that causes widespread production losses. Thus, management and control of poultry health and diseases are essential for the viability of the industry. Toll-like receptors are best characterized as membrane-bound receptors that perform a central role in immune homeostasis and disease resistance by recognition of pathogen-associated molecular patterns. In response to pathogen recognition, TLRs initiate both innate and adaptive immune responses which may help to develop immunomodulatory therapeutics for TLR associated diseases. Vaccination produces specific immunity in the animal's body towards pathogens. However, due to certain disadvantages of vaccines, (inactivation of attenuated pathogens into the virulent strains and weak immunogenicity of inactivated vaccines) there is a crucial need to develop the safe and effective therapeutic intervention. TLR ligands have been classified as a potential adjuvant against the infectious diseases in farm animals. TLR adjuvants induce both specific and nonspecific immune responses in chickens to combat several bacterial, viral and parasitic diseases. Therefore, the aim of this review was to explore the chicken TLR4 and their role in immune responses and disease resistance to develop disease resistance poultry breeds in future.
Collapse
Affiliation(s)
- Aamir Nawab
- Department of Animal Science, Guangdong Ocean University, Zhanjiang, Guangdong, China.,Faculty of Veterinary Medicine, PMAS- Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Lilong An
- Department of Animal Science, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jiang Wu
- Department of Animal Science, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Guanghui Li
- Department of Animal Science, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Wenchao Liu
- Department of Animal Science, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yi Zhao
- Department of Animal Science, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Qimin Wu
- Mechanical and Power Engineering College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Mei Xiao
- Department of Animal Science, Guangdong Ocean University, Zhanjiang, Guangdong, China
| |
Collapse
|
5
|
Venkatas J, Adeleke M, Peters S, Adebambo O. Phenotypic Differentiation of Purebred and Crossbred Indigenous Chicken Genotypes Using Multivariate Analysis. ACTA ACUST UNITED AC 2019. [DOI: 10.3923/ijps.2019.301.308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Tohidi R, Javanmard A, Idris I. Immunogenetics applied to control salmonellosis in chicken: a review. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2017.1301256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Reza Tohidi
- Department of Animal Science, Torbat-e Jam University of Agriculture, Torbat-e Jam, Iran
| | - Arash Javanmard
- Department of Animal Science, University of Tabriz, Tabriz, Iran
| | - Ismail Idris
- Department of Animal Science, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
7
|
Gilroy DL, Phillips KP, Richardson DS, van Oosterhout C. Toll-like receptor variation in the bottlenecked population of the Seychelles warbler: computer simulations see the 'ghost of selection past' and quantify the 'drift debt'. J Evol Biol 2017; 30:1276-1287. [PMID: 28370771 DOI: 10.1111/jeb.13077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 03/21/2017] [Indexed: 01/09/2023]
Abstract
Balancing selection can maintain immunogenetic variation within host populations, but detecting its signal in a postbottlenecked population is challenging due to the potentially overriding effects of drift. Toll-like receptor genes (TLRs) play a fundamental role in vertebrate immune defence and are predicted to be under balancing selection. We previously characterized variation at TLR loci in the Seychelles warbler (Acrocephalus sechellensis), an endemic passerine that has undergone a historical bottleneck. Five of seven TLR loci were polymorphic, which is in sharp contrast to the low genomewide variation observed. However, standard population genetic statistical methods failed to detect a contemporary signature of selection at any TLR locus. We examined whether the observed TLR polymorphism could be explained by neutral evolution, simulating the population's demography in the software DIYABC. This showed that the posterior distributions of mutation rates had to be unrealistically high to explain the observed genetic variation. We then conducted simulations with an agent-based model using typical values for the mutation rate, which indicated that weak balancing selection has acted on the three TLR genes. The model was able to detect evidence of past selection elevating TLR polymorphism in the prebottleneck populations, but was unable to discern any effects of balancing selection in the contemporary population. Our results show drift is the overriding evolutionary force that has shaped TLR variation in the contemporary Seychelles warbler population, and the observed TLR polymorphisms might be merely the 'ghost of selection past'. Forecast models predict immunogenetic variation in this species will continue to be eroded in the absence of contemporary balancing selection. Such 'drift debt' occurs when a gene pool has not yet reached its new equilibrium level of polymorphism, and this loss could be an important threat to many recently bottlenecked populations.
Collapse
Affiliation(s)
- D L Gilroy
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - K P Phillips
- School of Biological Sciences, University of East Anglia, Norwich, UK.,Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - D S Richardson
- School of Biological Sciences, University of East Anglia, Norwich, UK.,Nature Seychelles, Mahe, Republic of Seychelles
| | - C van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
8
|
Wang J, Zhang Z, Chang F, Yin D. Bioinformatics analysis of the structural and evolutionary characteristics for toll-like receptor 15. PeerJ 2016; 4:e2079. [PMID: 27257554 PMCID: PMC4888287 DOI: 10.7717/peerj.2079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/03/2016] [Indexed: 12/21/2022] Open
Abstract
Toll-like receptors (TLRs) play important role in the innate immune system. TLR15 is reported to have a unique role in defense against pathogens, but its structural and evolution characterizations are still poorly understood. In this study, we identified 57 completed TLR15 genes from avian and reptilian genomes. TLR15 clustered into an individual clade and was closely related to family 1 on the phylogenetic tree. Unlike the TLRs in family 1 with the broken asparagine ladders in the middle, TLR15 ectodomain had an intact asparagine ladder that is critical to maintain the overall shape of ectodomain. The conservation analysis found that TLR15 ectodomain had a highly evolutionarily conserved region on the convex surface of LRR11 module, which is probably involved in TLR15 activation process. Furthermore, the protein-protein docking analysis indicated that TLR15 TIR domains have the potential to form homodimers, the predicted interaction interface of TIR dimer was formed mainly by residues from the BB-loops and αC-helixes. Although TLR15 mainly underwent purifying selection, we detected 27 sites under positive selection for TLR15, 24 of which are located on its ectodomain. Our observations suggest the structural features of TLR15 which may be relevant to its function, but which requires further experimental validation.
Collapse
Affiliation(s)
- Jinlan Wang
- Institute of Developmental Biology, School of Life Science, Shandong University , Jinan , China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University , Jinan , China
| | - Fen Chang
- Institute of Developmental Biology, School of Life Science, Shandong University , Jinan , China
| | - Deling Yin
- School of Pharmacy, Central South University, Changsha, China; Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson, TN, USA
| |
Collapse
|