1
|
Luyckx T, Grootaert C, Delcour JA, Housmans JAJ, Rousseau F, Schymkowitz J, Carpentier S, Van Camp J. Impact of amyloid-like ovalbumin fibril consumption on health-related markers: An in vitro approach. Food Res Int 2025; 208:116288. [PMID: 40263866 DOI: 10.1016/j.foodres.2025.116288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/16/2025] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
Induction of amyloid-like morphology in food proteins offers high potential to induce new techno-functional properties in food products (e.g. use as emulsifier, thickener or gelling agent in e.g. bakery and confectionery products). However, the health impact of amyloid-like fibril (ALF) consumption remains widely understudied and merits additional research. The aim of this study was to (partially) elucidate the general health impact of food-borne ALF consumption, using egg white ovalbumin as a case study. Based on in vitro cell culture models it was demonstrated that ovalbumin ALFs (i) do not induce direct cytotoxic effects on intestinal (Caco-2, IPEC-J2) and neuronal (SH-SY5Y) cell lines, but (ii) are able to induce a Toll-like-receptor-mediated innate immune response, similar to endogenous amyloids, in activated THP-1 cells. Furthermore, the consecutive in vitro digestion and absorption (enterocyte and M-cell) experiments demonstrated that ovalbumin ALFs (i) do not completely lose their ALF morphology upon in vitro gastrointestinal digestion, and that (ii) the ALF core sequences, located at the center of the ALF structure, are transported across Caco-2 based cell models, suggesting aggregate transport. In vivo, intestinal translocation of ingested ALFs would imply potential cross-seeding of endogenous, disease-related precursor proteins. The ability of ovalbumin ALFs to induce aggregation of a disease-related precursor protein, αSyn, was evaluated in a precursor overexpressing cell model. Here, it was illustrated that only homologous (αSyn) - but not heterologous (ovalbumin) - seeding resulted in intracellular aggregation bodies of (phosphorylated) αSyn. The lack of cross-seeding supports the assumption that ovalbumin ALF consumption is not a risk factor for the development of α-synucleinopathies like Parkinson's disease.
Collapse
Affiliation(s)
- Trui Luyckx
- Laboratory of Food Chemistry and Human Nutrition, Ghent University, Ghent, Belgium
| | - Charlotte Grootaert
- Laboratory of Food Chemistry and Human Nutrition, Ghent University, Ghent, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Leuven, Belgium
| | - Joëlle A J Housmans
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sebastien Carpentier
- Facility for Systems Biology Based Mass Spectrometry, KU Leuven, Leuven, Belgium
| | - John Van Camp
- Laboratory of Food Chemistry and Human Nutrition, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Liang Y, Zhang P, Liu M, Liu H, He B, Zhu Y, Wang J. Plant-based protein amyloid fibrils: Origins, formation, extraction, applications, and safety. Food Chem 2025; 469:142559. [PMID: 39732075 DOI: 10.1016/j.foodchem.2024.142559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
Amyloid fibrils (AFs) are highly ordered nanostructures formed through the self-assembly of proteins under specific conditions. Due to their unique properties, AFs have garnered significant attention as biomaterials over the past decade. Nevertheless, the increasing reliance on animal proteins for AFs production raises sustainability concerns, highlighting the need for a transition to plant-based proteins as more environmentally friendly feedstocks. This review summarizes the conditions, mechanisms, and factors influencing the fibrillisation of over 20 plant-based protein amyloid fibrils (PAFs). The effectiveness of enzymatic extraction and membrane separation for isolating PAFs was also evaluated. Additionally, the review discusses the potential for enhancing PAFs' suitability through cross-linking with external agents. In the future, PAFs may be developed as advanced nanomaterials for a range of applications, including food hydrogels, cell-cultured meat scaffolds, and food detection sensors. However, thorough investigation of safety concerns and process improvements remain the primary challenges for the development of PAFs.
Collapse
Affiliation(s)
- Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Penghui Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Mei Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Hao Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Baoshan He
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yingying Zhu
- College of Food and Bioengineering, Zhengzhou R&D Center for high-quality innovation of Green Food (Green Premium Agricultural Products), Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Moccia V, Tucciarone CM, Garutti S, Milazzo M, Ferri F, Palizzotto C, Mazza M, Basset M, Zini E, Ricagno S, Ferro S. AA amyloidosis in vertebrates: epidemiology, pathology and molecular aspects. Amyloid 2025; 32:3-13. [PMID: 39427299 DOI: 10.1080/13506129.2024.2417219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
AA amyloidosis is a prototypic example of systemic amyloidosis: it results from the prolonged overproduction of SAA protein produced in response to chronic inflammation. AA amyloidosis primarily affects the kidneys, liver, spleen, gastrointestinal tract, leading to a variety of symptoms. First, this review examines AA amyloidosis in humans, focusing on pathogenesis, clinical presentation, and diagnosis and then in animals. In fact AA amyloidosis is the only systemic amyloidosis that has been largely documented in a remarkable number of vertebrate species: mammals, birds, and fishes, especially in individuals with comorbidities, chronic stress, or held in captivity. Secondly, here, we summarise independent sets of evidence obtained on different animal species, exploring the possible transmissibility of AA amyloidosis especially in crowded or confined populations. Finally, biochemical and structural data on native SAA and on AA amyloid fibrils from human, murine, and cat ex vivo samples are discussed. The available structural data depict a complex scenario, where SAA can misfold forming highly different amyloid assemblies. This review highlights the complexity of AA amyloidosis, emphasising the need for further research into its spread in the animal kingdom, its structural aspects, and pathogenetic mechanisms to evaluate its impact on human and animal health.
Collapse
Affiliation(s)
- Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
- Department of Physics and Astronomy, University of Padua, Padua, Italy
| | | | - Silvia Garutti
- Ambulatorio Veterinario Libia, Bologna, Italy
- Ambulatorio Veterinario Pievese, Pieve di Cento, BO, Italy
| | - Melissa Milazzo
- Department of Biosciences, University of Milan, Milan, Italy
| | - Filippo Ferri
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
- AniCura Istituto Veterinario Novara, Granozzo con Monticello, NO, Italy
- Studio Veterinario Associato Vet2Vet di Ferri e Porporato, Orbassano, TO, Italy
| | - Carlo Palizzotto
- AniCura Istituto Veterinario Novara, Granozzo con Monticello, NO, Italy
| | - Maria Mazza
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta
| | - Marco Basset
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Foundation "Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo", Pavia, Italy
| | - Eric Zini
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
- AniCura Istituto Veterinario Novara, Granozzo con Monticello, NO, Italy
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Stefano Ricagno
- Department of Biosciences, University of Milan, Milan, Italy
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| |
Collapse
|
4
|
Iwaide S, Murakami T, Sedghi Masoud N, Kobayashi N, Fortin JS, Miyahara H, Higuchi K, Chambers JK. Classification of amyloidosis and protein misfolding disorders in animals 2024: A review on pathology and diagnosis. Vet Pathol 2025; 62:117-138. [PMID: 39389927 DOI: 10.1177/03009858241283750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Amyloidosis is a group of diseases in which proteins become amyloid, an insoluble fibrillar aggregate, resulting in organ dysfunction. Amyloid deposition has been reported in various animal species. To diagnose and understand the pathogenesis of amyloidosis, it is important to identify the amyloid precursor protein involved in each disease. Although 42 amyloid precursor proteins have been reported in humans, little is known about amyloidosis in animals, except for a few well-described amyloid proteins, including amyloid A (AA), amyloid light chain (AL), amyloid β (Aβ), and islet amyloid polypeptide-derived amyloid. Recently, several types of novel amyloidosis have been identified in animals using immunohistochemistry and mass spectrometry-based proteomic analysis. Certain species are predisposed to specific types of amyloidosis, suggesting a genetic background for its pathogenesis. Age-related amyloidosis has also emerged due to the increased longevity of captive animals. In addition, experimental studies have shown that some amyloids may be transmissible. Accurate diagnosis and understanding of animal amyloidosis are necessary for appropriate therapeutic intervention and comparative pathological studies. This review provides an updated classification of animal amyloidosis, including associated protein misfolding disorders of the central nervous system, and the current understanding of their pathogenesis. Pathologic features are presented together with state-of-the-art diagnostic methods that can be applied for routine diagnosis and identification of novel amyloid proteins in animals.
Collapse
Affiliation(s)
- Susumu Iwaide
- Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | - Tomoaki Murakami
- Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | | | | | | | | | - Keiichi Higuchi
- Shinshu University, Matsumoto, Japan
- Meio University, Nago, Japan
| | | |
Collapse
|
5
|
Osawa S, Iwaide S, Kobayashi K, Oba R, Murakami T. Studies on the potential risk of amyloidosis from exposure to cultured fibril from silk fibroin. Biomed Phys Eng Express 2024; 10:055008. [PMID: 38959872 DOI: 10.1088/2057-1976/ad5e86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
Amyloid A (AA) amyloidosis is induced by administering amyloid fibrils to animals under inflammatory conditions. Silk fibroin (SF), the main component of silk threads, forms amyloid-like fibrils and has been previously reported to induce AA amyloidosis in mice. In this study, SF was cultured in ethanol solution, and after confirming fibril formation through thioflavin T assay, Congo red assay, and observation under electron microscopy, cultured SF ethanol solutions were administered to mice via various routes to investigate the induction of target organs and amyloidosis. As a result, cultured SF ethanol solutions were confirmed to reach the lungs and spleen, but no amyloid deposition was observed. While SF forms amyloid-like fibril structures through cultivation in ethanol solution, its amyloid-enhancing factor (AEF) activity is considered low in mice.
Collapse
Affiliation(s)
- Satomi Osawa
- Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Susumu Iwaide
- Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kyoko Kobayashi
- Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryohei Oba
- Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tomoaki Murakami
- Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
6
|
Luyckx T, Grootaert C, Monge‐Morera M, Delcour JA, Rousseau F, Schymkowitz J, Van Camp J. Bioavailability and Health Impact of Ingested Amyloid‐like Protein Fibrils and their Link with Inflammatory Status: a Need for More Research? Mol Nutr Food Res 2022; 66:e2101032. [DOI: 10.1002/mnfr.202101032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/24/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Trui Luyckx
- Laboratory of Food Chemistry and Human Nutrition Faculty of Bioscience Engineering Ghent University Ghent Belgium
| | - Charlotte Grootaert
- Laboratory of Food Chemistry and Human Nutrition Faculty of Bioscience Engineering Ghent University Ghent Belgium
| | - Margarita Monge‐Morera
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe) KU Leuven Leuven Belgium
| | - Jan A. Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe) KU Leuven Leuven Belgium
| | - Frederic Rousseau
- Switch Laboratory VIB‐KU Leuven Center for Brain & Disease Research Leuven Belgium
- Department of Cellular and Molecular Medicine KU Leuven Leuven Belgium
| | - Joost Schymkowitz
- Switch Laboratory VIB‐KU Leuven Center for Brain & Disease Research Leuven Belgium
- Department of Cellular and Molecular Medicine KU Leuven Leuven Belgium
| | - John Van Camp
- Laboratory of Food Chemistry and Human Nutrition Faculty of Bioscience Engineering Ghent University Ghent Belgium
| |
Collapse
|
7
|
KOBAYASHI H, IWAIDE S, UJIKE N, MURAKAMI T. Oxazolone-induced gastrointestinal disorders enhance the oral transmission of AA amyloidosis in mice. J Vet Med Sci 2021; 83:935-939. [PMID: 33883362 PMCID: PMC8267199 DOI: 10.1292/jvms.21-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/11/2021] [Indexed: 11/22/2022] Open
Abstract
Amyloid A (AA) amyloidosis is a lethal disease characterized by systemic AA amyloid deposition, and is reported in many animal species. Despite experiments have shown that AA amyloidosis can be transmitted orally, horizontal transmission and cross-species transmission are concerns, the transmission mechanism has been unknown. In this study, we examined the oral transmission efficiency of AA amyloidosis using oxazolone-induced gastrointestinal disorder mice. As a result, the upper or lower gastrointestinal disorder groups developed more severe amyloid deposition in systemic tissues than the group without gastrointestinal disorders. The results of this study suggest that gastrointestinal damage promotes the oral transmission of AA amyloidosis.
Collapse
Affiliation(s)
- Hiroto KOBAYASHI
- Laboratory of Veterinary Toxicology, Cooperative Department
of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho,
Fuchu, Tokyo 183-8509, Japan
| | - Susumu IWAIDE
- Laboratory of Veterinary Toxicology, Cooperative Department
of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho,
Fuchu, Tokyo 183-8509, Japan
| | - Naoki UJIKE
- Laboratory of Veterinary Toxicology, Cooperative Department
of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho,
Fuchu, Tokyo 183-8509, Japan
| | - Tomoaki MURAKAMI
- Laboratory of Veterinary Toxicology, Cooperative Department
of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho,
Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|