1
|
Abstract
Infection by parasites or pathogens can have marked physiological impacts on individuals. In birds, infection may affect moult and feather growth, which is an energetically demanding time in the annual cycle. Previous work has suggested a potential link between clinically visible Trichomonas gallinae infection and wing length in turtle doves Streptopelia turtur arriving on breeding grounds. First, T. gallinae infection was characterized in 149 columbids from 5 species, sampled on turtle dove wintering grounds in Senegal during the moulting period, testing whether infection by T. gallinae is linked to moult. Trichomonas gallinae prevalence was 100%, so rather than testing for differences between infected and uninfected birds, we tested for differences in moult progression between birds infected by different T. gallinae strains. Twelve strains of T. gallinae were characterized at the internal transcribed spacer 1 (ITS1)/5.8S/ITS2 region, of which 6 were newly identified within this study. In turtle doves only, evidence for differences in wing length by strain was found, with birds infected by strain Tcl-1 having wings nearly 6 mm longer than those infected with strain GEO. No evidence was found for an effect of strain identity within species on moult progression, but comparisons between infected and uninfected birds should be further investigated in species where prevalence is lower.
Collapse
|
2
|
Chen DQ, Luo XY, Li QQ, Pan JC, Zhang H, Gu YY, Kan ZZ, Huang JM, Fang Z, Liu XC, Gu YF, Li WC. Molecular prevalence of Tetratrichomonas gallinarum and Trichomonas gallinae in three domestic free-range poultry breeds in Anhui Province, China. Parasitol Res 2022; 121:2841-2848. [PMID: 35939147 DOI: 10.1007/s00436-022-07617-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
Tetratrichomonas gallinarum and Trichomonas gallinae can colonize the alimentary tract of domestic birds. However, little information is available on the epidemiology of the two trichomonad species in domestic free-range poultry in China. In this study, the occurrence and genetic characteristic of T. gallinarum and T. gallinae among free-range chickens, ducks, and geese in Anhui Province, China, were investigated. The 1910 fecal samples collected from 18 free-range poultry farms throughout Anhui Province were examined for the presence of T. gallinarum and T. gallinae by PCR and sequence analysis of the small subunit (SSU) rRNA gene of T. gallinarum and ITS1-5.8S-ITS2 sequence of T. gallinae. The overall occurrence of T. gallinarum in poultry was 1.2% (22/1910), with infection rates of 2.1% (17/829) in chickens, 0.2% (1/487) in ducks, and 0.7% (4/594) in geese. The constructed phylogeny tree using the concatenated ITS1-5.8S-ITS2 region and SSU rRNA indicated the T. gallinarum isolates detected in this study were closely related to previously defined genogroups A, D, and E, respectively. Nine (0.5%) fecal samples were positive for T. gallinae, with infection rates of 0.8% (7/829) in chickens, 0.4% (2/487) in ducks, and 0% (0/594) in geese. Sequence and phylogenetic analysis showed that four T. gallinae ITS1-5.8S-ITS2 sequences obtained from chicken feces and one duck fecal sample belonged to genotype ITS-OBT-Tg-1. This is the first report of the prevalence and genetic characterization of T. gallinarum and T. gallinae in free-range chickens, ducks, and geese in China.
Collapse
Affiliation(s)
- Dong-Qian Chen
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang, Chuzhou, 233100, People's Republic of China
| | - Xin-Yu Luo
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang, Chuzhou, 233100, People's Republic of China
| | - Qiao-Qiao Li
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang, Chuzhou, 233100, People's Republic of China
| | - Jin-Chao Pan
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang, Chuzhou, 233100, People's Republic of China
| | - Hen Zhang
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang, Chuzhou, 233100, People's Republic of China
| | - Yue-Yue Gu
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang, Chuzhou, 233100, People's Republic of China
| | - Zhen-Zhen Kan
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang, Chuzhou, 233100, People's Republic of China
| | - Jia-Min Huang
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang, Chuzhou, 233100, People's Republic of China
| | - Zhui Fang
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang, Chuzhou, 233100, People's Republic of China
| | - Xin-Chao Liu
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang, Chuzhou, 233100, People's Republic of China
| | - You-Fang Gu
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang, Chuzhou, 233100, People's Republic of China
| | - Wen-Chao Li
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang, Chuzhou, 233100, People's Republic of China.
| |
Collapse
|
3
|
Chou S, Hadano S, Kojima A, Yorisaki M, Yasuda M, Ike K, Tokiwa T. Genetic characterization of Trichomonas gallinae (Rivolta, 1878) in companion birds in Japan and the genotypical relationship in the Asia region. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:527-534. [PMID: 34246556 DOI: 10.1016/j.jmii.2021.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/08/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND/PURPOSE Avian trichomonosis is a parasitic infection that affects a wide range of avian species, including free-ranging and pet birds worldwide, and Trichomonas gallinae has been considered as the only causative agent for decades. The sequence of the 5.8S ribosomal RNA with internal transcribed spacer (ITS) regions was widely used for identifying genotypes and determining inter-specific and intra-specific diversity. Moreover, the sequence of Fe-hydrogenase (FeHyd) was proposed as the second genetic marker for providing improved resolution of strain subtyping discrimination. Though the correlation between genetic variability and strain virulence is controversial, FeHyd analyses seemed to be useful to investigate the host or geographic origin of isolates. This study aimed to investigate the genetic characteristics of avian Trichomonas spp. METHODS Forty-seven oral swabs and crop lavage fluids were collected from 9 avian genera, which were diagnosed as Trichomonas-positive by microscopy in animal hospitals in Japan, were analyzed. RESULTS Genetic analysis of clonal isolates revealed the prevalence of the single genotype, ITS-OBT-Tg-1, by ITS region analysis, while two different subtypes, A2 and novel A3, were suggested by FeHyd gene analysis among Japanese companion birds. Phylogenetic analyses of available ITS sequences obtained from the Asia region (China, Iran, Iraq, and Saudi Arabia) were also preformed, revealing endemic ITS-OBT-Tg-1, ITS-OBT-Tg-2, ITS-OBT-Ttl-1, genotype III, and Saudi Arabia's unique lineages. Furthermore, ITS-OBT-Tg-2 predominance in these countries indicates different strains origination from Japan. CONCLUSION This is the first report of the genetic characterization of T. gallinae in Japan with discovery of novel subtype A3.
Collapse
Affiliation(s)
- Shyun Chou
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan.
| | - Shinichiro Hadano
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan
| | - Atsushi Kojima
- Little Animal and Bird Clinic LITTLE BIRD, Gotokuji, Setagaya, Tokyo, 154-0021, Japan; Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Mario Yorisaki
- Morishita Bird Clinic, Shin-ohashi, Koto, Tokyo, 135-0007, Japan; Laboratory of Veterinary Pathology, Co-department of Veterinary Medicine, Iwate University, Ueda, Morioka, Iwate, 020-8550, Japan
| | - Masaru Yasuda
- Masa-no-Mori Pet Clinic, Kigoshimachi, Kanazawa, Ishikawa, 920-0203, Japan
| | - Kazunori Ike
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan
| | - Toshihiro Tokiwa
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan
| |
Collapse
|
4
|
Alrefaei AF. Molecular detection and genetic characterization of Trichomonas gallinae in falcons in Saudi Arabia. PLoS One 2020; 15:e0241411. [PMID: 33119695 PMCID: PMC7595344 DOI: 10.1371/journal.pone.0241411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022] Open
Abstract
Avian trichomonosis is primarily caused by Trichomonas gallinae, a flagellated protozoan parasite that especially infects the upper digestive tract of columbid bird species and their avian predators. However, this parasite has recently been found to be distributed worldwide in various other avian species. This parasitic disease is common in captive falcons in Saudi Arabia and the Middle East. This study aimed to examine and identify the genetic variation of T. gallinae obtained from three species of falcons in Saudi Arabia via the sequencing analysis of the internal transcribed spacer (ITS) region. Swab samples from 97 saker falcons (Falco cherrug), 24 peregrine falcons (Falco peregrinus) and 37 gyrfalcons (Falco rusticolus) were cultured and analysed for infection between 2018 and 2019. The overall prevalence of infection by T. gallinae was 26.58% (n = 42), of which 35 (83.33%) were collected from Riyadh region and seven (16.67%) were collected from Qassim region. The results indicate the presence of four genotypes of T. gallinae in Saudi falcons: A, C, II, and KSA11. This study reports for the first time genetic diversity of T. gallinae in these falcons in Saudi Arabia.
Collapse
|