1
|
Nerini M, Russo A, Decorosi F, Meriggi N, Viti C, Cavalieri D, Marvasi M. A Microbial Phenomics Approach to Determine Metabolic Signatures to Enhance Seabream Sparus aurata Traceability, Differentiating between Wild-Caught and Farmed. Foods 2024; 13:2726. [PMID: 39272492 PMCID: PMC11394949 DOI: 10.3390/foods13172726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND The need for efficient and simplified techniques for seafood traceability is growing. This study proposes the Biolog EcoPlate assay as an innovative method for assessing wild and farmed Sparus aurata traceability, offering advantages over other molecular techniques in terms of technical simplicity. METHODS The Biolog EcoPlate assay, known for its high-throughput capabilities in microbial ecology, was utilized to evaluate the functional diversity of microbial communities from various organs of S. aurata (seabream) from the Mediterranean area. Samples were taken from the anterior and posterior gut, cloaca swabs and gills to distinguish between farmed and wild-caught individuals. The analysis focused on color development in OmniLog Units for specific carbon sources at 48 h. RESULTS Gills provided the most accurate clusterization of sample origin. The assay monitored the development of color for carbon sources such as α-cyclodextrin, D-cellobiose, glycogen, α-D-lactose, L-threonine and L-phenylalanine. A mock experiment using principal component analysis (PCA) successfully identified the origin of a blind sample. Shannon and Simpson indexes were used to statistically assess the diversity, reflecting the clusterization of different organ samples; Conclusions: The Biolog EcoPlate assay proves to be a quick, cost-effective method for discriminate S. aurata traceability (wild vs. farmed), demonstrating reliable reproducibility and effective differentiation between farmed and wild-caught seabream.
Collapse
Affiliation(s)
- Marta Nerini
- Department of Biology, University of Florence, Via Madonna del Piano, 50019 Firenze, Italy
| | - Alessandro Russo
- Department of Biology, University of Florence, Via Madonna del Piano, 50019 Firenze, Italy
| | - Francesca Decorosi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50019 Florence, Italy
| | - Niccolò Meriggi
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), 56124 Pisa, Italy
| | - Carlo Viti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50019 Florence, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano, 50019 Firenze, Italy
| | - Massimiliano Marvasi
- Department of Biology, University of Florence, Via Madonna del Piano, 50019 Firenze, Italy
| |
Collapse
|
2
|
Dourou D, Doulgeraki AI, Vitsou-Anastasiou S, Argyri AA, Chorianopoulos NG, Nychas GJE, Tassou CC. Deciphering the growth responses and genotypic diversity of bioluminescent Photobacterium phosphoreum on chicken meat during aerobic refrigerated storage. Int J Food Microbiol 2023; 405:110334. [PMID: 37517119 DOI: 10.1016/j.ijfoodmicro.2023.110334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/29/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
The advent of high-throughput sequencing technologies in recent years has revealed the unexpected presence of genus Photobacterium within the chicken meat spoilage ecosystem. This study was undertaken to decipher the occurrence, the growth patterns and the genotypic biodiversity of Photobacterium phosphoreum on chicken breast fillets stored aerobically at 4 °C through conventional microbiological methods and molecular techniques. Samples were periodically cultured on marine broth agar (MA; supplemented with meat extract and vancomycin) for the enumeration of presumptive bioluminescent Photobacterium spp. In total, 90 bioluminescent bacteria were recovered from the initial (time of first appearance), middle and end stages of storage. Concomitantly, 95 total psychrotrophic/psychrophilic bacteria were isolated from the same medium to assess the presence and diversity of non-luminous photobacteria. Genetic diversity between bioluminescent isolates was assessed with two PCR-based DNA fingerprinting methods, i.e. RAPD and rep-PCR. Moreover, the characterization of selected bacterial isolates at the genus and/or species level was performed by sequencing of the 16S rRNA and/or gyrB gene. Bioluminescent bacteria were scarcely encountered in fresh samples at population levels of ca. 2.0 log CFU/g, whilst total psychrotrophic/psychrophilic bacteria were found at levels of ca. 4.4 log CFU/g. As time proceeded and close to shelf-life end, bioluminescent bacteria were encountered at higher populations, and were found at levels of 5.3 and 7.0 log CFU/g in samples from the second and third batch, respectively. In the first batch their presence was occasional and at levels up to 3.9 log CFU/g. Accordingly, total psychrotrophic/psychrophilic bacteria exceeded 8.4 log CFU/g at the end of storage, suggesting the possible underestimation of bioluminescent populations following the specific cultivation conditions. Sequence analysis assigned bioluminescent isolates to Photobacterium phosphoreum, while genetic fingerprinting revealed high intra-species variability. Respectively, total psychrotrophs/psychrophiles were assigned to genera Pseudomonas, Shewanella, Psychrobacter, Acinetobacter, Vibrio and Photobacterium. Non-luminous photobacteria were not identified within the psychrotrophs/psychrophiles. Results of the present study reveal the intra- and inter-batch variability on the occurrence and growth responses of P. phosphoreum and highlight its potential role in the chicken meat spoilage consortium.
Collapse
Affiliation(s)
- Dimitra Dourou
- Hellenic Agricultural Organization - DIMITRA, Institute of Technology of Agricultural Products, Sofokli Venizelou 1, 14123 Lycovrissi, Attica, Greece
| | - Agapi I Doulgeraki
- Hellenic Agricultural Organization - DIMITRA, Institute of Technology of Agricultural Products, Sofokli Venizelou 1, 14123 Lycovrissi, Attica, Greece.
| | - Stamatia Vitsou-Anastasiou
- Hellenic Agricultural Organization - DIMITRA, Institute of Technology of Agricultural Products, Sofokli Venizelou 1, 14123 Lycovrissi, Attica, Greece; Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Microbiology and Biotechnology, Iera Odos 75, 11855 Athens, Greece
| | - Anthoula A Argyri
- Hellenic Agricultural Organization - DIMITRA, Institute of Technology of Agricultural Products, Sofokli Venizelou 1, 14123 Lycovrissi, Attica, Greece
| | - Nikos G Chorianopoulos
- Hellenic Agricultural Organization - DIMITRA, Institute of Technology of Agricultural Products, Sofokli Venizelou 1, 14123 Lycovrissi, Attica, Greece; Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Microbiology and Biotechnology, Iera Odos 75, 11855 Athens, Greece
| | - George-John E Nychas
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Microbiology and Biotechnology, Iera Odos 75, 11855 Athens, Greece
| | - Chrysoula C Tassou
- Hellenic Agricultural Organization - DIMITRA, Institute of Technology of Agricultural Products, Sofokli Venizelou 1, 14123 Lycovrissi, Attica, Greece.
| |
Collapse
|
3
|
Efenberger-Szmechtyk M, Nowak A, Czyżowska A, Śniadowska M, Otlewska A, Żyżelewicz D. Antibacterial mechanisms of Aronia melanocarpa (Michx.), Chaenomeles superba Lindl. and Cornus mas L. leaf extracts. Food Chem 2021; 350:129218. [PMID: 33621817 DOI: 10.1016/j.foodchem.2021.129218] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
The aim of this study was to investigate the in vitro antibacterial mechanisms of Aronia melanocarpa, Chaenomeles superba, and Cornus mas leaf extracts towards meat spoilage and pathogenic bacteria. The extracts decreased bacterial viability after 24 h and 48 h of incubation. Acting as prooxidants, the extracts induced intracellular ROS (reactive oxygen species) generation in bacteria cells, with C. mas having the strongest influence. The leaf extracts increased the release of UV intracellular absorbing components, suggesting a reduction in membrane integrity. They also increased the outer-membrane permeability of the Gram-negative bacteria, with C. superba extract being the most active. Following exposure to the leaf extracts, morphological changes in the bacteria were observed, including the formation of aggregates, EPS synthesis, irregular forms, wrinkled cell surfaces, pores in the cell wall, and shriveling of cells. The leaf extracts inhibited DNA synthesis in E. coli cells by suppressing DNA gyrase activity.
Collapse
Affiliation(s)
- Magdalena Efenberger-Szmechtyk
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Agnieszka Nowak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Agata Czyżowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Monika Śniadowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Anna Otlewska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Dorota Żyżelewicz
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| |
Collapse
|
4
|
Li N, Zhang Y, Wu Q, Gu Q, Chen M, Zhang Y, Sun X, Zhang J. High-throughput sequencing analysis of bacterial community composition and quality characteristics in refrigerated pork during storage. Food Microbiol 2019; 83:86-94. [DOI: 10.1016/j.fm.2019.04.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/28/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
|
5
|
Peruzy MF, Murru N, Yu Z, Kerkhof PJ, Neola B, Joossens M, Proroga YTR, Houf K. Assessment of microbial communities on freshly killed wild boar meat by MALDI-TOF MS and 16S rRNA amplicon sequencing. Int J Food Microbiol 2019; 301:51-60. [PMID: 31100642 DOI: 10.1016/j.ijfoodmicro.2019.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/22/2022]
Abstract
Wild boars (Sus scrofa) are the most widely distributed large mammals and recent increase in consumption of wild boar meat urges the need of microbiological quality criteria. The aim of the study was to characterize the initial bacterial contamination on freshly-killed wild boar meat using a culture-dependent approach with ISO-methods combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification and 16S rRNA amplicon sequencing. Moreover, the presence of foodborne pathogens was examined using Real-Time-PCR and confirmed by classical isolation. Analysing 22 unrelated wild boar meat samples showed a higher bacterial contamination level compared to pork, with Salmonella present in almost one third of the samples. A great variability of the microbial contamination between the samples was recorded, as well as complementary results between culturing and 16S rRNA amplicon sequencing as frequently isolated genera were not always detected, and vice versa. Furthermore, the foodborne pathogen Salmonella was never detected with 16S rRNA amplicon sequencing, demonstrating the necessity for a cautious approach in the implementation of new analysis techniques in food safety. The present work determines that attention should be paid to the trade of non-inspected meat directly to retail or consumers.
Collapse
Affiliation(s)
- M F Peruzy
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Via Delpino 1, 80137 Napoli, Italy; Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Karel Lodewijk Ledeganckstraat 35, Ghent, Belgium
| | - N Murru
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Via Delpino 1, 80137 Napoli, Italy.
| | - Z Yu
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Karel Lodewijk Ledeganckstraat 35, Ghent, Belgium
| | - P-J Kerkhof
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - B Neola
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, NA, Italy
| | - M Joossens
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Karel Lodewijk Ledeganckstraat 35, Ghent, Belgium
| | - Y T R Proroga
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, NA, Italy
| | - K Houf
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
6
|
Juárez-Castelán C, García-Cano I, Escobar-Zepeda A, Azaola-Espinosa A, Álvarez-Cisneros Y, Ponce-Alquicira E. Evaluation of the bacterial diversity of Spanish-type chorizo during the ripening process using high-throughput sequencing and physicochemical characterization. Meat Sci 2019; 150:7-13. [DOI: 10.1016/j.meatsci.2018.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/29/2018] [Accepted: 09/02/2018] [Indexed: 11/30/2022]
|
7
|
Peruzy M, Murru N, Yu Z, Cnockaert M, Joossens M, Proroga Y, Houf K. Determination of the microbiological contamination in minced pork by culture dependent and 16S amplicon sequencing analysis. Int J Food Microbiol 2019; 290:27-35. [DOI: 10.1016/j.ijfoodmicro.2018.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/14/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022]
|