1
|
Zhao YX, Shen Y, Chen LW, Li J, Yang J. Neonicotinoid insecticide sulfoxaflor in the environment: a critical review of environmental fate, degradation mechanism, and toxic effects. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:818-832. [PMID: 40094185 DOI: 10.1039/d4em00798k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
In recent decades, neonicotinoids (NEOs) have become widely adopted in agriculture for the control of crop pests and plant pathogens, leading to improved crop yields and enhanced agricultural productivity. However, the prolonged and widespread use of NEOs has raised significant concerns regarding their environmental persistence, food safety, and public health risks. These pesticides have been shown to contaminate various environmental compartments, including soil, surface water, and groundwater, posing potential hazards to ecosystems and human health. Microbes play a crucial role in mitigating the environmental impact of toxic pesticides, with microbial degradation emerging as a promising, cost-effective strategy for degrading pesticide residues. Several sulfoxaflor (SUL)-degrading microbes have been isolated and characterized, yet the identification of microbes, genes, and enzymes responsible for the degradation of NEOs remains an area requiring further investigation. Despite some progress, few reviews have comprehensively addressed the underlying mechanisms of NEOs degradation. This paper provides a detailed review of research on the environmental distribution, exposure risks, and ecotoxicological effects of NEOs, with a particular focus on the environmental fate of SUL. It aims to offer a novel perspective on the fate of NEOs in the environment, their potential toxicological effects, and the role of microbes in mitigating their impact.
Collapse
Affiliation(s)
- Yun-Xiu Zhao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Yue Shen
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, People's Republic of China.
| | - Li-Wen Chen
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, People's Republic of China.
| | - Jing Li
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, People's Republic of China.
| | - Ju Yang
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, People's Republic of China.
| |
Collapse
|
2
|
Sun S, Guo J, Zhu Z, Zhou J. Microbial degradation mechanisms of the neonicotinoids acetamiprid and flonicamid and the associated toxicity assessments. Front Microbiol 2024; 15:1500401. [PMID: 39564486 PMCID: PMC11573777 DOI: 10.3389/fmicb.2024.1500401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Extensive use of the neonicotinoid insecticides acetamiprid (ACE) and flonicamid (FLO) in agriculture poses severe environmental and ecological risks. Microbial remediation is considered a feasible approach to address these issues. Many ACE-and FLO-degrading microorganisms have been isolated and characterized, but few reviews have concentrated on the underlying degradation mechanisms. In this review, we describe the microbial degradation pathways of ACE and FLO and assess the toxicity of ACE, FLO and their metabolites. Especially, we focus on the enzymes involved in degradation of ACE and FLO, including cytochrome P450s, nitrile hydratases, amidases, and nitrilases. Those studies reviewed here further our understanding of the enzymatic mechanisms of microbial degradation of ACE and FLO, and aid in the application of microbes to remediate environmental ACE and FLO contamination.
Collapse
Affiliation(s)
- Shilei Sun
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Jingjing Guo
- School of Life Science and Environmental Engineering, Nanjing Normal University Zhongbei College, Zhenjiang, China
| | - Zhi Zhu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Jiangsheng Zhou
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
3
|
Zhao YX, Yuan J, Song KW, Yin CJ, Chen LW, Yang KY, Yang J, Dai YJ. Efficient Biodegradation of the Neonicotinoid Insecticide Flonicamid by Pseudaminobacter salicylatoxidans CGMCC 1.17248: Kinetics, Pathways, and Enzyme Properties. Microorganisms 2024; 12:1063. [PMID: 38930445 PMCID: PMC11205548 DOI: 10.3390/microorganisms12061063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Nitrile-containing insecticides can be converted into their amide derivatives by Pseudaminobacter salicylatoxidans. N-(4-trifluoromethylnicotinoyl) glycinamide (TFNG-AM) is converted to 4-(trifluoromethyl) nicotinoyl glycine (TFNG) using nitrile hydratase/amidase. However, the amidase that catalyzes this bioconversion has not yet been fully elucidated. In this study, it was discovered that flonicamid (FLO) is degraded by P. salicylatoxidans into the acid metabolite TFNG via the intermediate TFNG-AM. A half-life of 18.7 h was observed for P. salicylatoxidans resting cells, which transformed 82.8% of the available FLO in 48 h. The resulting amide metabolite, TFNG-AM, was almost all converted to TFNG within 19 d. A novel amidase-encoding gene was cloned and overexpressed in Escherichia coli. The enzyme, PmsiA, hydrolyzed TFNG-AM to TFNG. Despite being categorized as a member of the amidase signature enzyme superfamily, PsmiA only shares 20-30% identity with the 14 previously identified members of this family, indicating that PsmiA represents a novel class of enzyme. Homology structural modeling and molecular docking analyses suggested that key residues Glu247 and Met242 may significantly impact the catalytic activity of PsmiA. This study contributes to our understanding of the biodegradation process of nitrile-containing insecticides and the relationship between the structure and function of metabolic enzymes.
Collapse
Affiliation(s)
- Yun-Xiu Zhao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China; (Y.-X.Z.); (K.-W.S.); (C.-J.Y.)
| | - Jing Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China;
| | - Ke-Wei Song
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China; (Y.-X.Z.); (K.-W.S.); (C.-J.Y.)
| | - Chi-Jie Yin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China; (Y.-X.Z.); (K.-W.S.); (C.-J.Y.)
| | - Li-Wen Chen
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China; (L.-W.C.); (K.-Y.Y.)
| | - Kun-Yan Yang
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China; (L.-W.C.); (K.-Y.Y.)
| | - Ju Yang
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China; (L.-W.C.); (K.-Y.Y.)
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China;
| |
Collapse
|
4
|
Zhao YX, Chen KX, Wang L, Yuan PP, Dai YJ. Biodegradation of sulfoxaflor and photolysis of sulfoxaflor by ultraviolet radiation. Biodegradation 2023; 34:341-355. [PMID: 36808271 DOI: 10.1007/s10532-023-10020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 02/06/2023] [Indexed: 02/21/2023]
Abstract
Sulfoxaflor (SUL, [N-[methyloxido[1-[6-(trifluoromethyl)-3-pyridinyl] ethyl]-λ4-sulfanylidene] cyanamide]) is a widely used systemic insecticide, and its residue has frequently been detected in the environment, posing a potential threat to the environment. In this study, Pseudaminobacter salicylatoxidans CGMCC 1.17248 rapidly converted SUL into X11719474 via a hydration pathway mediated by two nitrile hydratases (AnhA and AnhB). Extensive (96.4%) degradation of 0.83 mmol/L SUL was achieved by P. salicylatoxidans CGMCC 1.17248 resting cells within 30 min (half-life of SUL 6.4 min). Cell immobilization by entrapment into calcium alginate remediated 82.8% of the SUL in 90 min, and almost no SUL was observed in surface water after incubation for 3 h. P. salicylatoxidans NHases AnhA and AnhB both hydrolyzed SUL to X11719474, although AnhA exhibited much better catalytic performance. The genome sequence of P. salicylatoxidans CGMCC 1.17248 revealed that this strain could efficiently eliminate nitrile-containing insecticides and adapt to harsh environments. We firstly found that UV irradiation transforms SUL to the derivatives X11719474 and X11721061, and the potential reaction pathways were proposed. These results further deepen our understanding of the mechanisms of SUL degradation as well as the environmental fate of SUL.
Collapse
Affiliation(s)
- Yun-Xiu Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Science, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, 224007, People's Republic of China
| | - Ke-Xin Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Science, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Li Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Science, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Pan-Pan Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Science, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Science, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
5
|
Jiang H, Yuan P, Ding J, Wu H, Wang L, Chen K, Jiang N, Dai Y. Novel biodegradation pathway of insecticide flonicamid mediated by an amidase and its unusual substrate spectrum. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129952. [PMID: 36116312 DOI: 10.1016/j.jhazmat.2022.129952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/20/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The insecticide flonicamid (FLO) and its main degradation intermediate 4-trifluoromethylnicotinamide (TFNA-AM) are hazardous to the environment and animals. Microbial transformation of FLO has been well studied, but no study has yet reported on TFNA-AM degradation by a microorganism. Here, Pseudomonas stutzeri CGMCC 22915 effectively degraded TFNA-AM to 5-trifluoromethylnicotinic acid (TFNA). P. stutzeri CGMCC 22915 degraded 60.0% of TFNA-AM (1154.44 μmol/L) within 6 h with a half-life of just 4.5 h. Moreover, P. stutzeri CGMCC 22915 significantly promoted TFNA-AM decomposition in surface water. The reaction was catalyzed by an amidase, PsAmiA. PsAmiA is encoded in a novel nitrile-converting enzyme gene cluster. The enzyme shared only 20-44% identities with previously characterized signature amidases. PsAmiA was successfully expressed in Escherichia coli and its enzymatic properties were investigated using TFNA-AM as the substrate. PsAmiA was more active toward amides without hydrophilic groups, and did not hydrolyze another amide metabolite of FLO, N-(4-trifluoromethylnicotinoyl)glycinamide (TFNG-AM), which is structurally very similar to TFNA-AM. Molecular docking of PsAmiA and TFNA-AM indicated that hydrophobic residues Leu148, Ala150, Ala195, Ile225, Trp341, Leu460, and Ile463 may affect its substrate spectrum. This study provides new insights of the environmental fate of FLO at the molecular level and the structure-function relationships of amidases.
Collapse
Affiliation(s)
- Huoyong Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Panpan Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Jianjun Ding
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Hongkai Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Li Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Kexin Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Nengdang Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Yijun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
6
|
Jiang HY, Jiang ND, Wang L, Guo JJ, Chen KX, Dai YJ. Characterization of nitrilases from Variovorax boronicumulans that functions in insecticide flonicamid degradation and β-cyano-L-alanine detoxification. J Appl Microbiol 2022; 133:311-322. [PMID: 35365856 DOI: 10.1111/jam.15561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 11/27/2022]
Abstract
AIMS To characterize the functions of nitrilases of Variovorax boronicumulans CGMCC 4969 and evaluate flonicamid (FLO) degradation and β-cyano-L-alanine (Ala(CN)) detoxification by this bacterium. METHODS AND RESULTS V. boronicumulans CGMCC 4969 nitrilases (NitA and NitB) were purified and substrate specificity assay indicated that both of them degraded insecticide FLO to N-(4-trifluoromethylnicotinoyl)glycinamide (TFNG-AM) and 4-(trifluoromethyl)nicotinol glycine (TFNG). Ala(CN), a plant detoxification intermediate, was hydrolyzed by NitB. Escherichia coli overexpressing NitA and NitB degraded 41.2 and 93.8% of FLO (0.87 mmol·L-1 ) within 1 h, with half-lives of 1.30 and 0.25 h, respectively. NitB exhibited the highest nitrilase activity toward FLO. FLO was used as a substrate to compare their enzymatic properties. NitB was more tolerant to acidic conditions and organic solvents than NitA. Conversely, NitA was more tolerant to metal ions than NitB. CGMCC 4969 facilitated FLO degradation in soil and surface water and utilized Ala(CN) as a sole nitrogen source for growth. CONCLUSIONS CGMCC 4969 efficiently degraded FLO mediated by NitA and NitB; NitB was involved in Ala(CN) detoxification. SIGNIFICANCE AND IMPACT OF THE STUDY This study promotes our understanding of versatile functions of nitrilases from CGMCC 4969 that is promising for environmental remediation.
Collapse
Affiliation(s)
- H Y Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - N D Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - L Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - J J Guo
- Nanjing Normal University Zhongbei College, Zhenjiang, People's Republic of China
| | - K X Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Y J Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
7
|
Ahmad S, Cui D, Zhong G, Liu J. Microbial Technologies Employed for Biodegradation of Neonicotinoids in the Agroecosystem. Front Microbiol 2021; 12:759439. [PMID: 34925268 PMCID: PMC8675359 DOI: 10.3389/fmicb.2021.759439] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Neonicotinoids are synthetic pesticides widely used for the control of various pests in agriculture throughout the world. They mainly attack the nicotinic acetylcholine receptors, generate nervous stimulation, receptor clot, paralysis and finally cause death. They are low volatile, highly soluble and have a long half-life in soil and water. Due to their extensive use, the environmental residues have immensely increased in the last two decades and caused many hazardous effects on non-target organisms, including humans. Hence, for the protection of the environment and diversity of living organism's the degradation of neonicotinoids has received widespread attention. Compared to the other methods, biological methods are considered cost-effective, eco-friendly and most efficient. In particular, the use of microbial species makes the degradation of xenobiotics more accessible fast and active due to their smaller size. Since this degradation also converts xenobiotics into less toxic substances, the various metabolic pathways for the microbial degradation of neonicotinoids have been systematically discussed. Additionally, different enzymes, genes, plasmids and proteins are also investigated here. At last, this review highlights the implementation of innovative tools, databases, multi-omics strategies and immobilization techniques of microbial cells to detect and degrade neonicotinoids in the environment.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Dongming Cui
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jie Liu
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Zhao YX, Wang L, Chen KX, Jiang ND, Sun SL, Ge F, Dai YJ. Biodegradation of flonicamid by Ensifer adhaerens CGMCC 6315 and enzymatic characterization of the nitrile hydratases involved. Microb Cell Fact 2021; 20:133. [PMID: 34256737 PMCID: PMC8278588 DOI: 10.1186/s12934-021-01620-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Flonicamid (N-cyanomethyl-4-trifluoromethylnicotinamide, FLO) is a new type of pyridinamide insecticide that regulates insect growth. Because of its wide application in agricultural production and high solubility in water, it poses potential risks to aquatic environments and food chain. RESULTS In the present study, Ensifer adhaerens CGMCC 6315 was shown to efficiently transform FLO into N-(4-trifluoromethylnicotinoyl) glycinamide (TFNG-AM) via a hydration pathway mediated by two nitrile hydratases, PnhA and CnhA. In pure culture, resting cells of E. adhaerens CGMCC 6315 degraded 92% of 0.87 mmol/L FLO within 24 h at 30 °C (half-life 7.4 h). Both free and immobilized (by gel beads, using calcium alginate as a carrier) E. adhaerens CGMCC 6315 cells effectively degraded FLO in surface water. PnhA has, to our knowledge, the highest reported degradation activity toward FLO, Vmax = 88.7 U/mg (Km = 2.96 mmol/L). Addition of copper ions could increase the enzyme activity of CnhA toward FLO by 4.2-fold. Structural homology modeling indicated that residue β-Glu56 may be important for the observed significant difference in enzyme activity between PnhA and CnhA. CONCLUSIONS Application of E. adhaerens may be a good strategy for bioremediation of FLO in surface water. This work furthers our understanding of the enzymatic mechanisms of biodegradation of nitrile-containing insecticides and provides effective transformation strategies for microbial remediation of FLO contamination.
Collapse
Affiliation(s)
- Yun-Xiu Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023 People’s Republic of China
| | - Li Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023 People’s Republic of China
| | - Ke-Xin Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023 People’s Republic of China
| | - Neng-Dang Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023 People’s Republic of China
| | - Shi-Lei Sun
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, 221116 People’s Republic of China
| | - Feng Ge
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, 210042 People’s Republic of China
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023 People’s Republic of China
| |
Collapse
|