1
|
Zhu C, Lan X, Wei Z, Yu J, Zhang J. Allosteric modulation of G protein-coupled receptors as a novel therapeutic strategy in neuropathic pain. Acta Pharm Sin B 2024; 14:67-86. [PMID: 38239234 PMCID: PMC10792987 DOI: 10.1016/j.apsb.2023.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 01/22/2024] Open
Abstract
Neuropathic pain is a debilitating pathological condition that presents significant therapeutic challenges in clinical practice. Unfortunately, current pharmacological treatments for neuropathic pain lack clinical efficacy and often lead to harmful adverse reactions. As G protein-coupled receptors (GPCRs) are widely distributed throughout the body, including the pain transmission pathway and descending inhibition pathway, the development of novel neuropathic pain treatments based on GPCRs allosteric modulation theory is gaining momentum. Extensive research has shown that allosteric modulators targeting GPCRs on the pain pathway can effectively alleviate symptoms of neuropathic pain while reducing or eliminating adverse effects. This review aims to provide a comprehensive summary of the progress made in GPCRs allosteric modulators in the treatment of neuropathic pain, and discuss the potential benefits and adverse factors of this treatment. We will also concentrate on the development of biased agonists of GPCRs, and based on important examples of biased agonist development in recent years, we will describe universal strategies for designing structure-based biased agonists. It is foreseeable that, with the continuous improvement of GPCRs allosteric modulation and biased agonist theory, effective GPCRs allosteric drugs will eventually be available for the treatment of neuropathic pain with acceptable safety.
Collapse
Affiliation(s)
- Chunhao Zhu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaobing Lan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zhiqiang Wei
- Medicinal Chemistry and Bioinformatics Center, Ocean University of China, Qingdao 266100, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jian Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Dasram MH, Walker RB, Khamanga SM. Recent Advances in Endocannabinoid System Targeting for Improved Specificity: Strategic Approaches to Targeted Drug Delivery. Int J Mol Sci 2022; 23:13223. [PMID: 36362014 PMCID: PMC9658826 DOI: 10.3390/ijms232113223] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022] Open
Abstract
Opportunities for developing innovative and intelligent drug delivery technologies by targeting the endocannabinoid system are becoming more apparent. This review provides an overview of strategies to develop targeted drug delivery using the endocannabinoid system (ECS). Recent advances in endocannabinoid system targeting showcase enhanced pharmaceutical therapy specificity while minimizing undesirable side effects and overcoming formulation challenges associated with cannabinoids. This review identifies advances in targeted drug delivery technologies that may permit access to the full pharmacotherapeutic potential of the ECS. The design of optimized nanocarriers that target specific tissues can be improved by understanding the nature of the signaling pathways, distribution in the mammalian body, receptor structure, and enzymatic degradation of the ECS. A closer look at ligand-receptor complexes, endocannabinoid tone, tissue distribution, and G-protein activity leads to a better understanding of the potential of the ECS toolkit for therapeutics. The signal transduction pathways examine the modulation of downstream effector proteins, desensitization, signaling cascades, and biased signaling. An in-depth and overall view of the targeted system is achieved through homology modeling where mutagenesis and ligand binding examine the binding site and allow sequence analysis and the formation of libraries for molecular docking and molecular dynamic simulations. Internalization routes exploring receptor-mediated endocytosis and lipid rafts are also considered for explicit signaling. Furthermore, the review highlights nanotechnology and surface modification aspects as a possible future approach for specific targeting.
Collapse
Affiliation(s)
| | | | - Sandile M. Khamanga
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
3
|
Brandt AL, Garai S, Zagzoog A, Hurst DP, Stevenson LA, Pertwee RG, Imler GH, Reggio PH, Thakur GA, Laprairie RB. Pharmacological evaluation of enantiomerically separated positive allosteric modulators of cannabinoid 1 receptor, GAT591 and GAT593. Front Pharmacol 2022; 13:919605. [PMID: 36386195 PMCID: PMC9640980 DOI: 10.3389/fphar.2022.919605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2023] Open
Abstract
Positive allosteric modulation of the type 1 cannabinoid receptor (CB1R) has substantial potential to treat both neurological and immune disorders. To date, a few studies have evaluated the structure-activity relationship (SAR) for CB1R positive allosteric modulators (PAMs). In this study, we separated the enantiomers of the previously characterized two potent CB1R ago-PAMs GAT591 and GAT593 to determine their biochemical activity at CB1R. Separating the enantiomers showed that the R-enantiomers (GAT1665 and GAT1667) displayed mixed allosteric agonist-PAM activity at CB1R while the S-enantiomers (GAT1664 and GAT1666) showed moderate activity. Furthermore, we observed that the R and S-enantiomers had distinct binding sites on CB1R, which led to their distinct behavior both in vitro and in vivo. The R-enantiomers (GAT1665 and GAT1667) produced ago-PAM effects in vitro, and PAM effects in the in vivo behavioral triad, indicating that the in vivo activity of these ligands may occur via PAM rather than agonist-based mechanisms. Overall, this study provides mechanistic insight into enantiospecific interaction of 2-phenylindole class of CB1R allosteric modulators, which have shown therapeutic potential in the treatment of pain, epilepsy, glaucoma, and Huntington's disease.
Collapse
Affiliation(s)
- Asher L. Brandt
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sumanta Garai
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Boston, MA, United States
| | - Ayat Zagzoog
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dow P. Hurst
- Center for Drug Discovery, University of North Carolina Greensboro, Greensboro, NC, United States
| | - Lesley A. Stevenson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Roger G. Pertwee
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Gregory H. Imler
- Centre for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC, United States
| | - Patricia H. Reggio
- Center for Drug Discovery, University of North Carolina Greensboro, Greensboro, NC, United States
| | - Ganesh A. Thakur
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Boston, MA, United States
| | - Robert B. Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
McElroy DL, Roebuck AJ, Greba Q, Garai S, Brandt AL, Yilmaz O, Cain SM, Snutch TP, Thakur GA, Laprairie RB, Howland JG. The type 1 cannabinoid receptor positive allosteric modulators GAT591 and GAT593 reduce spike-and-wave discharges in Genetic Absence Epilepsy Rats from Strasbourg. IBRO Neurosci Rep 2022; 12:121-130. [PMID: 35128516 PMCID: PMC8804275 DOI: 10.1016/j.ibneur.2022.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Childhood absence epilepsy (CAE) is a non-convulsive seizure disorder primarily in children characterized by absence seizures. Absence seizures consist of 2.5–5 Hz spike-and-wave discharges (SWDs) detectable using electroencephalography (EEG). Current drug treatments are only partially effective and adverse side effects have spurred research into alternative treatment approaches. Recent research shows that positive allosteric modulation of the type-1 cannabinoid receptor (CB1R) reduces the frequency and duration of SWDs in Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a model that recapitulates the SWDs in CAE. Here, we tested additional CB1R ago-PAMs, GAT591 and GAT593, for their potential in alleviating SWD activity in GAERS. In vitro experiments confirm that GAT591 and GAT593 exhibit increased potency and selectivity in cell cultures and behave as CB1R allosteric agonists and PAMs. To assess drug effects on SWDs, bilateral electrodes were surgically implanted in the somatosensory cortices of male GAERS and EEGs recorded for 4 h following systemic administration of GAT591 or GAT593 (1.0, 3.0 and 10.0 mg/kg). Both GAT591 and GAT593 dose-dependently reduced total SWD duration during the recording period. The greatest effect on SWD activity was observed at 10.0 mg/kg doses, with GAT591 and GAT593 reducing seizure duration by 36% and 34% respectively. Taken together, these results support the continued investigation of CB1R PAMs as a potential therapeutic to alleviate SWDs in absence epilepsy. Positive allosteric modulators (PAMs) of cannabinoid type 1 receptors may help treat absence epilepsy. Two ago-PAMs for CB1Rs were assessed using in vitro and in vivo assays. The increased efficacy of the CB1R-PAMs GAT591 and GAT593 was confirmed in vitro. Systemic injection of either compound reduced spike-and-wave discharges in a rat genetic model of absence epilepsy.
Collapse
Affiliation(s)
- Dan L. McElroy
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Andrew J. Roebuck
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- School of Liberal Arts, Yukon University, Whitehorse, YT Y1A 5K4, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Sumanta Garai
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Asher L. Brandt
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Orhan Yilmaz
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Stuart M. Cain
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Terrance P. Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ganesh A. Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Robert B. Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence to: College of Pharmacy and Nutrition, University of Saskatchewan, 3B36 - 104 Clinic Place, Saskatoon, SK S7N 5E5, Canada.
| | - John G. Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Correspondence to: Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, GD30.7, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
5
|
Gado F, Ceni C, Ferrisi R, Sbrana G, Stevenson LA, Macchia M, Pertwee RG, Bertini S, Manera C, Ortore G. CB1 receptor binding sites for NAM and PAM: A first approach for studying, new n‑butyl‑diphenylcarboxamides as allosteric modulators. Eur J Pharm Sci 2021; 169:106088. [PMID: 34863873 DOI: 10.1016/j.ejps.2021.106088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 01/01/2023]
Abstract
The development of cannabinoid receptor type-1 (CB1R) modulators has been implicated in multiple pathophysiological events ranging from memory deficits to neurodegenerative disorders among others, even if their central psychiatric side effects such as depression, anxiety, and suicidal tendencies, have limited their clinical use. Thus, the identification of ligands which selectively act on peripheral CB1Rs, is becoming more interesting. A recent study reported a class of peripheral CB1R selective antagonists, characterized by a 5-aryl substituted nicotinamide core. These derivatives have structural similarities with the biphenyl compounds, endowed with CB2R antagonist activity, previously synthesized by our research group. In this work we combined the pharmacophoric portion of both classes, in order to obtain novel CBR antagonists. Among the synthesized compounds rather unexpectedly two compounds of this series, C7 and C10, did not show the radioligand ([3H]CP55940) displacement on CB1R but increased binding (∼ 150%), suggesting a possible allosteric behavior. Computational studies were performed to investigate the role of these compounds in CB1R modulation. The analysis of their binding poses in two different binding cavities of the CB1R surface, revealed a preferred interaction with the experimental binding site for negative allosteric modulators.
Collapse
Affiliation(s)
- Francesca Gado
- Department of Pharmacy, University of Pisa, 56126 Pisa Italy
| | - Costanza Ceni
- Department of Pharmacy, University of Pisa, 56126 Pisa Italy; Doctoral school in Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Rebecca Ferrisi
- Department of Pharmacy, University of Pisa, 56126 Pisa Italy
| | - Giulia Sbrana
- Department of Pharmacy, University of Pisa, 56126 Pisa Italy
| | - Lesley A Stevenson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD Aberdeen, Scotland, UK
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa Italy
| | - Roger G Pertwee
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD Aberdeen, Scotland, UK
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, 56126 Pisa Italy
| | | | | |
Collapse
|
6
|
Allosteric Modulation of the CB1 Cannabinoid Receptor by Cannabidiol-A Molecular Modeling Study of the N-Terminal Domain and the Allosteric-Orthosteric Coupling. Molecules 2021; 26:molecules26092456. [PMID: 33922473 PMCID: PMC8122825 DOI: 10.3390/molecules26092456] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
The CB1 cannabinoid receptor (CB1R) contains one of the longest N termini among class A G protein-coupled receptors. Mutagenesis studies suggest that the allosteric binding site of cannabidiol (CBD) involves residues from the N terminal domain. In order to study the allosteric binding of CBD to CB1R we modeled the whole N-terminus of this receptor using the replica exchange molecular dynamics with solute tempering (REST2) approach. Then, the obtained structures of CB1R with the N terminus were used for ligand docking. A natural cannabinoid receptor agonist, Δ9-THC, was docked to the orthosteric site and a negative allosteric modulator, CBD, to the allosteric site positioned between extracellular ends of helices TM1 and TM2. The molecular dynamics simulations were then performed for CB1R with ligands: (i) CBD together with THC, and (ii) THC-only. Analyses of the differences in the residue-residue interaction patterns between those two cases allowed us to elucidate the allosteric network responsible for the modulation of the CB1R by CBD. In addition, we identified the changes in the orthosteric binding mode of Δ9-THC, as well as the changes in its binding energy, caused by the CBD allosteric binding. We have also found that the presence of a complete N-terminal domain is essential for a stable binding of CBD in the allosteric site of CB1R as well as for the allosteric-orthosteric coupling mechanism.
Collapse
|
7
|
Aderibigbe AO, Pandey P, Doerksen RJ. Negative allosteric modulators of cannabinoid receptor 1: Ternary complexes including CB1, orthosteric CP55940 and allosteric ORG27569. J Biomol Struct Dyn 2021; 40:5729-5747. [PMID: 33480332 DOI: 10.1080/07391102.2021.1873187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In October 2019, the first X-ray crystal structure of a ternary cannabinoid receptor 1 (CB1) complex (PDB ID: 6KQI) was published, including the well-known orthosteric agonist, CP55940, and the well-studied negative allosteric modulator, ORG27569. Prior to the release of 6KQI, we applied binding pocket analysis and molecular docking to carefully prepared computational models of the ternary CB1 complex, in order to predict the binding site for ORG27569 with the CP55940-bound CB1 receptor. We carefully studied the binding pose of agonist ligands in the CB1 orthosteric pocket, including CP55940. Our computational studies identified the most favorable binding site for ORG27569, in the CP55940-CB1 complex, to be at the intracellular end of the receptor. However, in the 6KQI structure, ORG27569 was found at an extrahelical, intramembrane site on the complex, a site that partially overlaps with the site predicted in our calculations to be second-best. We performed molecular dynamics simulations of the CP55940-bound CB1 complex with ORG27569 at different binding sites. Our analysis of the simulations indicated that ORG27569 bound favorably and stably in each simulation, but, as in the earlier calculations, bound best at the intracellular site, which is different than that found in the crystal structure. These results suggest that the intracellular site might serve as an alternative binding site in CB1. Our studies show that the computational techniques we used are valuable in identifying ligand-binding pockets in proteins, and could be useful for the study of the interaction mode of other allosteric modulators.
Collapse
Affiliation(s)
- AyoOluwa O Aderibigbe
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Pankaj Pandey
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS, USA.,National Center for Natural Products Research, University of Mississippi, University, Mississippi, USA
| | - Robert J Doerksen
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS, USA.,Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, USA
| |
Collapse
|
8
|
A novel allosteric modulator of the cannabinoid CB 1 receptor ameliorates hyperdopaminergia endophenotypes in rodent models. Neuropsychopharmacology 2021; 46:413-422. [PMID: 33036015 PMCID: PMC7852560 DOI: 10.1038/s41386-020-00876-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
The endocannabinoid system (eCBs) encompasses the endocannabinoids, their synthetic and degradative enzymes, and cannabinoid (CB) receptors. The eCBs mediates inhibition of neurotransmitter release and acts as a major homeostatic system. Many aspects of the eCBs are altered in a number of psychiatric disorders including schizophrenia, which is characterized by dysregulation of dopaminergic signaling. The GluN1-Knockdown (GluN1KD) and Dopamine Transporter Knockout (DATKO) mice are models of hyperdopaminergia, which display abnormal psychosis-related behaviors, including hyperlocomotion and changes in pre-pulse inhibition (PPI). Here, we investigate the ability of a novel CB1 receptor (CB1R) allosteric modulator, ABM300, to ameliorate these dysregulated behaviors. ABM300 was characterized in vitro (receptor binding, β-arrestin2 recruitment, ERK1/2 phosphorylation, cAMP inhibition) and in vivo (anxiety-like behaviors, cannabimimetic effects, novel environment exploratory behavior, pre-pulse inhibition, conditioned avoidance response) to assess the effects of the compound in dysregulated behaviors within the transgenic models. In vitro, ABM300 increased CB1R agonist binding but acted as an inhibitor of CB1R agonist induced signaling, including β-arrestin2 translocation, ERK phosphorylation and cAMP inhibition. In vivo, ABM300 did not elicit anxiogenic-like or cannabimimetic effects, but it decreased novelty-induced hyperactivity, exaggerated stereotypy, and vertical exploration in both transgenic models of hyperdopaminergia, as well as normalizing PPI in DATKO mice. The data demonstrate for the first time that a CB1R allosteric modulator ameliorates the behavioral deficits in two models of increased dopamine, warranting further investigation as a potential therapeutic target in psychiatry.
Collapse
|
9
|
Joshi N, Onaivi ES. Psychiatric Disorders and Cannabinoid Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1264:131-153. [PMID: 33332008 PMCID: PMC10810008 DOI: 10.1007/978-3-030-57369-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
With the increasing global use of medical and adult recreational use of cannabis and cannabinoids, this chapter provides overview of evidence from animal and human studies on psychiatric disorders and cannabinoid receptors. We review and present evaluation of the relationship between changes in the ECS and psychiatric disorders. Evidence suggests the existence of a relationship between changes in components of the ECS, and some of the symptoms present in psychiatric disorders. Both CB1Rs and CB2Rs are components of the endocannabinoid system with different cellular and tissue localization patterns that are differentially expressed in the CNS and PNS and are emerging targets for the treatment of number psychiatric disorders. As cannabis preparations are widely used for recreation globally, it is predictable that cannabis use disorders (CUDs) will increase and there is currently no available treatment for CUDs. Although major advances have been reported from cannabinoid and ECS research, there are gaps in scientific knowledge on long-term consequences of cannabis use. Adolescent and cannabis use during pregnancy presents further challenges, and more research will uncover the signaling pathways that couple the gut microbiota with the host ECS. Development of cannabis and cannabinoid nanomedicine for nanotherapy will certainly overcome some of the shortcomings and challenges in medicinal and recreational use of cannabis and cannabinoids. Thus, nanotechnology will allow targeted delivery of cannabinoid formulations with the potential to elevate their use to scientifically validated nanotherapeutic applications as the field of cannabis nanoscience matures.
Collapse
Affiliation(s)
- Neal Joshi
- Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | | |
Collapse
|
10
|
Gado F, Mohamed KA, Meini S, Ferrisi R, Bertini S, Digiacomo M, D'Andrea F, Stevenson LA, Laprairie RB, Pertwee RG, Manera C. Variously substituted 2-oxopyridine derivatives: Extending the structure-activity relationships for allosteric modulation of the cannabinoid CB2 receptor. Eur J Med Chem 2020; 211:113116. [PMID: 33360803 DOI: 10.1016/j.ejmech.2020.113116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
We previously reported the 2-oxopyridine-3-carboxamide derivative EC21a as the first small synthetic CB2R positive allosteric modulator which displayed antinociceptive activity in vivo in an experimental mouse model of neuropathic pain. Herein, we extended the structure-activity relationships of EC21a through structural modifications regarding the p-fluoro benzyl moiety at position 1 and the amide group in position 3 of the central core. The characterization in vitro was assessed through radioligand binding experiments and functional assays (GTPγS, cAMP, βarrestin2). Among the new compounds, the derivatives A1 (SV-10a) and A5 (SB-13a) characterized respectively by fluorine atom or by chlorine atom in ortho position of the benzylic group at position 1 and by a cycloheptane-carboxamide at position 3 of the central core, showed positive allosteric behavior on CB2R. They enhanced the efficacy of CP55,940 in [35S]GTPγS assay, and modulated CP55,940-dependent βarrestin2 recruitment and cAMP inhibition. The obtained results extend our knowledge of the structural requirements for interaction with the allosteric site of CB2R.
Collapse
Affiliation(s)
- Francesca Gado
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Kawthar A Mohamed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Serena Meini
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Rebecca Ferrisi
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | | | - Lesley A Stevenson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD, Aberdeen, Scotland, UK
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Roger G Pertwee
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD, Aberdeen, Scotland, UK
| | | |
Collapse
|
11
|
Positive allosteric modulation of the cannabinoid type-1 receptor (CB1R) in periaqueductal gray (PAG) antagonizes anti-nociceptive and cellular effects of a mu-opioid receptor agonist in morphine-withdrawn rats. Psychopharmacology (Berl) 2020; 237:3729-3739. [PMID: 32857187 PMCID: PMC7687722 DOI: 10.1007/s00213-020-05650-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022]
Abstract
Opioid drugs are a first-line treatment for severe acute pain and other chronic pain conditions, but long-term opioid drug use produces opioid-induced hyperalgesia (OIH). Co-administration of cannabinoids with opioid receptor agonists produce anti-nociceptive synergy, but cannabinoid receptor agonists may also produce undesirable side effects. Therefore, positive allosteric modulators (PAM) of cannabinoid type-1 receptors (CB1R) may provide an option reducing pain and/or enhancing the anti-hyperalgesic effects of opioids without the side effects, tolerance, and dependence observed with the use of ligands that target the orthosteric binding sites. This study tested GAT211, a PAM of cannabinoid type-1 receptors (CB1R), for its ability to enhance the anti-hyperalgesic effects of the mu-opioid receptor (MOR) agonist DAMGO in rats treated chronically with morphine (or saline) and tested during withdrawal. We tested the effects of intra-periaqueductal gray (PAG) injections of (1) DAMGO, (2) GAT211, or (3) DAMGO + GAT211 on thermal nociception in chronic morphine-treated rats that were hyperalgesic and also in saline-treated control rats. We used slice electrophysiology to test the effects of DAMGO/GAT211 bath application on synaptic transmission in the vlPAG. Intra-PAG DAMGO infusions dose-dependently reversed chronic morphine-induced hyperalgesia, but intra-PAG GAT211 did not alter nociception at the doses we tested. When co-administered into the PAG, GAT211 antagonized the anti-nociceptive effects of DAMGO in morphine-withdrawn rats. DAMGO suppressed synaptic inhibition in the vlPAG of brain slices taken from saline- and morphine-treated rats, and GAT211 attenuated DAMGO-induced suppression of synaptic inhibition in vlPAG neurons via actions at CB1R. These findings show that positive allosteric modulation of CB1R antagonizes the behavioral and cellular effects of a MOR agonist in the PAG of rats.
Collapse
|
12
|
Morales P, Jagerovic N. Novel approaches and current challenges with targeting the endocannabinoid system. Expert Opin Drug Discov 2020; 15:917-930. [PMID: 32336154 PMCID: PMC7502221 DOI: 10.1080/17460441.2020.1752178] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The pathophysiological relevance of the endocannabinoid system has been widely demonstrated in a variety of diseases including cancer, neurological disorders, and metabolic issues. Therefore, targeting the receptors and the endogenous machinery involved in this system can provide a successful therapeutic outcome. Ligands targeting the canonical cannabinoid receptors, CB1 and CB2, along with inhibitors of the endocannabinoid enzymes have been thoroughly studied in diverse disease models. In fact, phytocannabinoids such as cannabidiol or Δ9-tetrahydrocannabinol are currently on the market for the management of neuropathic pain due to spasticity in multiple sclerosis or seizures in children epilepsy amongst others. AREAS COVERED Challenges in the pharmacology of cannabinoids arise from its pharmacokinetics, off-target effects, and psychoactive effects. In this context, the current review outlines the novel molecular approaches emerging in the field discussing their clinical potential. EXPERT OPINION Even if orthosteric CB1 and CB2 ligands are on the forefront in cannabinoid clinical research, emerging strategies such as allosteric or biased modulation of these receptors along with controlled off-targets effects may increase the therapeutic potential of cannabinoids.
Collapse
Affiliation(s)
- Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
13
|
Allosteric modulators targeting cannabinoid cb1 and cb2 receptors: implications for drug discovery. Future Med Chem 2020; 11:2019-2037. [PMID: 31517528 DOI: 10.4155/fmc-2019-0005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Allosteric modulators of cannabinoid receptors hold great therapeutic potential, as they do not possess intrinsic efficacy, but instead enhance or diminish the receptor's response of orthosteric ligands allowing for the tempering of cannabinoid receptor signaling without the desensitization, tolerance and dependence. Allosteric modulators of cannabinoid receptors have numerous advantages over the orthosteric ligands such as higher receptor type selectivity, probe dependence and biased signaling, so they have a great potential to separate the therapeutic benefits from side effects own of orthosteric ligands. This review aims to give an overview of the CB1 and CB2 receptor allosteric modulators highlighting the structure-activity relationship and pharmacological profile of each classes, and their future promise.
Collapse
|
14
|
Slivicki RA, Iyer V, Mali SS, Garai S, Thakur GA, Crystal JD, Hohmann AG. Positive Allosteric Modulation of CB 1 Cannabinoid Receptor Signaling Enhances Morphine Antinociception and Attenuates Morphine Tolerance Without Enhancing Morphine- Induced Dependence or Reward. Front Mol Neurosci 2020; 13:54. [PMID: 32410959 PMCID: PMC7199816 DOI: 10.3389/fnmol.2020.00054] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/17/2020] [Indexed: 01/09/2023] Open
Abstract
Opioid analgesics represent a critical treatment for chronic pain in the analgesic ladder of the World Health Organization. However, their use can result in a number of unwanted side-effects including incomplete efficacy, constipation, physical dependence, and overdose liability. Cannabinoids enhance the pain-relieving effects of opioids in preclinical studies and dampen unwanted side-effects resulting from excessive opioid intake. We recently reported that a CB1 positive allosteric modulator (PAM) exhibits antinociceptive efficacy in models of pathological pain and lacks the adverse side effects of direct CB1 receptor activation. In the present study, we evaluated whether a CB1 PAM would enhance morphine’s therapeutic efficacy in an animal model of chemotherapy-induced neuropathic pain and characterized its impact on unwanted side-effects associated with chronic opioid administration. In paclitaxel-treated mice, both the CB1 PAM GAT211 and the opioid analgesic morphine reduced paclitaxel-induced behavioral hypersensitivities to mechanical and cold stimulation in a dose-dependent manner. Isobolographic analysis revealed that combinations of GAT211 and morphine resulted in anti-allodynic synergism. In paclitaxel-treated mice, a sub-threshold dose of GAT211 prevented the development of tolerance to the anti-allodynic effects of morphine over 20 days of once daily dosing. However, GAT211 did not reliably alter somatic withdrawal signs (i.e., jumps, paw tremors) in morphine-dependent neuropathic mice challenged with naloxone. In otherwise naïve mice, GAT211 also prolonged antinociceptive efficacy of morphine in the tail-flick test and reduced the overall right-ward shift in the ED50 for morphine to produce antinociception in the tail-flick test, consistent with attenuation of morphine tolerance. Pretreatment with GAT211 did not alter somatic signs of μ opioid receptor dependence in mice rendered dependent upon morphine via subcutaneous implantation of a morphine pellet. Moreover, GAT211 did not reliably alter μ-opioid receptor-mediated reward as measured by conditioned place preference to morphine. Our results suggest that a CB1 PAM may be beneficial in enhancing and prolonging the therapeutic properties of opioids while potentially sparing unwanted side-effects (e.g., tolerance) that occur with repeated opioid treatment.
Collapse
Affiliation(s)
- Richard A Slivicki
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Vishakh Iyer
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Sonali S Mali
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Sumanta Garai
- Center for Drug Discovery, Bouve College of Health Sciences, Northeastern University, Boston, MA, United States
| | - Ganesh A Thakur
- Center for Drug Discovery, Bouve College of Health Sciences, Northeastern University, Boston, MA, United States
| | - Jonathon D Crystal
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Andrea G Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States.,Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States
| |
Collapse
|
15
|
The therapeutic potential of second and third generation CB1R antagonists. Pharmacol Ther 2020; 208:107477. [DOI: 10.1016/j.pharmthera.2020.107477] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/02/2020] [Indexed: 12/25/2022]
|
16
|
Bruder M, Polo G, Trivella DBB. Natural allosteric modulators and their biological targets: molecular signatures and mechanisms. Nat Prod Rep 2020; 37:488-514. [PMID: 32048675 DOI: 10.1039/c9np00064j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2008 to 2018Over the last decade more than two hundred single natural products were confirmed as natural allosteric modulators (alloNPs) of proteins. The compounds are presented and discussed with the support of a chemical space, constructed using a principal component analysis (PCA) of molecular descriptors from chemical compounds of distinct databases. This analysis showed that alloNPs are dispersed throughout the majority of the chemical space defined by natural products in general. Moreover, a cluster of alloNPs was shown to occupy a region almost devoid of allosteric modulators retrieved from a dataset composed mainly of synthetic compounds, further highlighting the importance to explore the entire natural chemical space for probing allosteric mechanisms. The protein targets which alloNPs bind to comprised 81 different proteins, which were classified into 5 major groups, with enzymes, in particular hydrolases, being the main representative group. The review also brings a critical interpretation on the mechanisms by which alloNPs display their molecular action on proteins. In the latter analysis, alloNPs were classified according to their final effect on the target protein, resulting in 3 major categories: (i) local alteration of the orthosteric site; (ii) global alteration in protein dynamics that change function; and (iii) oligomer stabilisation or protein complex destabilisation via protein-protein interaction in sites distant from the orthosteric site. G-protein coupled receptors (GPCRs), which use a combination of the three types of allosteric regulation found, were also probed by natural products. In summary, the natural allosteric modulators reviewed herein emphasise their importance for exploring alternative chemotherapeutic strategies, potentially pushing the boundaries of the druggable space of pharmacologically relevant drug targets.
Collapse
Affiliation(s)
- Marjorie Bruder
- Brazilian Biosciences National Laboratory (LNBio), National Centre for Research in Energy and Materials (CNPEM), 13083-970 Campinas, SP, Brazil.
| | | | | |
Collapse
|
17
|
Thapa D, Cairns EA, Szczesniak AM, Kulkarni PM, Straiker AJ, Thakur GA, Kelly MEM. Allosteric Cannabinoid Receptor 1 (CB1) Ligands Reduce Ocular Pain and Inflammation. Molecules 2020; 25:E417. [PMID: 31968549 PMCID: PMC7024337 DOI: 10.3390/molecules25020417] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/16/2020] [Indexed: 01/08/2023] Open
Abstract
Cannabinoid receptor 1 (CB1) activation has been reported to reduce transient receptor potential cation channel subfamily V member 1 (TRPV1)-induced inflammatory responses and is anti-nociceptive and anti-inflammatory in corneal injury. We examined whether allosteric ligands, can modulate CB1 signaling to reduce pain and inflammation in corneal hyperalgesia. Corneal hyperalgesia was generated by chemical cauterization of cornea in wildtype and CB2 knockout (CB2-/-) mice. The novel racemic CB1 allosteric ligand GAT211 and its enantiomers GAT228 and GAT229 were examined alone or in combination with the orthosteric CB1 agonist Δ8-tetrahydrocannabinol (Δ8-THC). Pain responses were assessed following capsaicin (1 µM) stimulation of injured corneas at 6 h post-cauterization. Corneal neutrophil infiltration was also analyzed. GAT228, but not GAT229 or GAT211, reduced pain scores in response to capsaicin stimulation. Combination treatments of 0.5% GAT229 or 1% GAT211 with subthreshold Δ8-THC (0.4%) significantly reduced pain scores following capsaicin stimulation. The anti-nociceptive effects of both GAT229 and GAT228 were blocked with CB1 antagonist AM251, but remained unaffected in CB2-/- mice. Two percent GAT228, or the combination of 0.2% Δ8-THC with 0.5% GAT229 also significantly reduced corneal inflammation. CB1 allosteric ligands could offer a novel approach for treating corneal pain and inflammation.
Collapse
Affiliation(s)
- Dinesh Thapa
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Elizabeth A. Cairns
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | | | - Pushkar M. Kulkarni
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Alex J. Straiker
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Ganesh A. Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Melanie E. M. Kelly
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
18
|
Garai S, Kulkarni PM, Schaffer PC, Leo LM, Brandt AL, Zagzoog A, Black T, Lin X, Hurst DP, Janero DR, Abood ME, Zimmowitch A, Straiker A, Pertwee RG, Kelly M, Szczesniak AM, Denovan-Wright EM, Mackie K, Hohmann AG, Reggio PH, Laprairie RB, Thakur GA. Application of Fluorine- and Nitrogen-Walk Approaches: Defining the Structural and Functional Diversity of 2-Phenylindole Class of Cannabinoid 1 Receptor Positive Allosteric Modulators. J Med Chem 2020; 63:542-568. [PMID: 31756109 DOI: 10.1021/acs.jmedchem.9b01142] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cannabinoid 1 receptor (CB1R) allosteric ligands hold a far-reaching therapeutic promise. We report the application of fluoro- and nitrogen-walk approaches to enhance the drug-like properties of GAT211, a prototype CB1R allosteric agonist-positive allosteric modulator (ago-PAM). Several analogs exhibited improved functional potency (cAMP, β-arrestin 2), metabolic stability, and aqueous solubility. Two key analogs, GAT591 (6r) and GAT593 (6s), exhibited augmented allosteric-agonist and PAM activities in neuronal cultures, improved metabolic stability, and enhanced orthosteric agonist binding (CP55,940). Both analogs also exhibited good analgesic potency in the CFA inflammatory-pain model with longer duration of action over GAT211 while being devoid of adverse cannabimimetic effects. Another analog, GAT592 (9j), exhibited moderate ago-PAM potency and improved aqueous solubility with therapeutic reduction of intraocular pressure in murine glaucoma models. The SAR findings and the enhanced allosteric activity in this class of allosteric modulators were accounted for in our recently developed computational model for CB1R allosteric activation and positive allosteric modulation.
Collapse
Affiliation(s)
- Sumanta Garai
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Pushkar M Kulkarni
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Peter C Schaffer
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Luciana M Leo
- Center for Substance Abuse Research, Lewis Katz School of Medicine , Temple University , Philadelphia , Pennsylvania 19140 , United States
| | - Asher L Brandt
- College of Pharmacy and Nutrition , University of Saskatchewan , 104 Clinic Pl , Saskatoon , SK S7N2Z4 , Canada
| | - Ayat Zagzoog
- College of Pharmacy and Nutrition , University of Saskatchewan , 104 Clinic Pl , Saskatoon , SK S7N2Z4 , Canada
| | - Tallan Black
- College of Pharmacy and Nutrition , University of Saskatchewan , 104 Clinic Pl , Saskatoon , SK S7N2Z4 , Canada
| | - Xiaoyan Lin
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Dow P Hurst
- Center for Drug Discovery , University of North Carolina Greensboro , Greensboro , North Carolina 27402 , United States
| | - David R Janero
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Department of Chemistry and Chemical Biology, College of Science, and Health Sciences Entrepreneurs , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Mary E Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine , Temple University , Philadelphia , Pennsylvania 19140 , United States
| | - Anaelle Zimmowitch
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Alex Straiker
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Roger G Pertwee
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences , University of Aberdeen , Aberdeen AB25 2ZD , Scotland, U.K
| | - Melanie Kelly
- Department of Pharmacology, Faculty of Medicine , Dalhousie University , 5850 College St , Halifax , NS , B3H4R2 , Canada
| | - Anna-Maria Szczesniak
- Department of Pharmacology, Faculty of Medicine , Dalhousie University , 5850 College St , Halifax , NS , B3H4R2 , Canada
| | - Eileen M Denovan-Wright
- Department of Pharmacology, Faculty of Medicine , Dalhousie University , 5850 College St , Halifax , NS , B3H4R2 , Canada
| | - Ken Mackie
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Andrea G Hohmann
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Patricia H Reggio
- Center for Drug Discovery , University of North Carolina Greensboro , Greensboro , North Carolina 27402 , United States
| | - Robert B Laprairie
- College of Pharmacy and Nutrition , University of Saskatchewan , 104 Clinic Pl , Saskatoon , SK S7N2Z4 , Canada.,Department of Pharmacology, Faculty of Medicine , Dalhousie University , 5850 College St , Halifax , NS , B3H4R2 , Canada
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , Massachusetts 02115 , United States
| |
Collapse
|
19
|
Allosteric Modulation of Cannabinoid Receptor 1-Current Challenges and Future Opportunities. Int J Mol Sci 2019; 20:ijms20235874. [PMID: 31771126 PMCID: PMC6928801 DOI: 10.3390/ijms20235874] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
The cannabinoid receptor type 1 (CB1R), a G protein-coupled receptor (GPCR), plays an essential role in the control of many physiological processes such as hunger, memory loss, gastrointestinal activity, catalepsy, fear, depression, and chronic pain. Therefore, it is an attractive target for drug discovery to manage pain, neurodegenerative disorders, obesity, and substance abuse. However, the psychoactive adverse effects, generated by CB1R activation in the brain, limit the use of the orthosteric CB1R ligands as drugs. The discovery of CB1R allosteric modulators during the last decade provided new tools to target the CB1R. Moreover, application of the site-directed mutagenesis in combination with advanced physical methods, especially X-ray crystallography and computational modeling, has opened new horizons for understanding the complexity of the structure, function, and activity of cannabinoid receptors. In this paper, we present the latest advances in research on the CB1R, its allosteric modulation and allosteric ligands, and their translational potential. We focused on structural essentials of the cannabinoid 1 receptor- ligand (drug) interactions, as well as modes of CB1R signaling regulation.
Collapse
|
20
|
Tseng CC, Baillie G, Donvito G, Mustafa MA, Juola SE, Zanato C, Massarenti C, Dall'Angelo S, Harrison WTA, Lichtman AH, Ross RA, Zanda M, Greig IR. The Trifluoromethyl Group as a Bioisosteric Replacement of the Aliphatic Nitro Group in CB 1 Receptor Positive Allosteric Modulators. J Med Chem 2019; 62:5049-5062. [PMID: 31050898 DOI: 10.1021/acs.jmedchem.9b00252] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The first generation of CB1 positive allosteric modulators (e.g., ZCZ011) featured a 3-nitroalkyl-2-phenyl-indole structure. Although a small number of drugs include the nitro group, it is generally not regarded as being "drug-like", and this is particularly true for aliphatic nitro groups. There are very few case studies where an appropriate bioisostere replaced a nitro group that had a direct role in binding. This may be indicative of the difficulty of replicating its binding interactions. Herein, we report the design and synthesis of ligands targeting the allosteric binding site on the CB1 cannabinoid receptor, in which a CF3 group successfully replaced the aliphatic NO2. In general, the CF3-bearing compounds were more potent than their NO2 equivalents and also showed improved in vitro metabolic stability. The CF3 analogue (1) with the best balance of properties was selected for further pharmacological evaluation. Pilot in vivo studies showed that (±)-1 has similar activity to (±)-ZCZ011, with both showing promising efficacy in a mouse model of neuropathic pain.
Collapse
Affiliation(s)
- Chih-Chung Tseng
- Kosterlitz Centre for Therapeutics , University of Aberdeen , Foresterhill, Aberdeen , AB25 2ZD Scotland, U.K
| | - Gemma Baillie
- Department of Pharmacology & Toxicology , University of Toronto , Toronto M5S 1A8 , Canada
| | | | | | | | - Chiara Zanato
- Kosterlitz Centre for Therapeutics , University of Aberdeen , Foresterhill, Aberdeen , AB25 2ZD Scotland, U.K
| | - Chiara Massarenti
- Kosterlitz Centre for Therapeutics , University of Aberdeen , Foresterhill, Aberdeen , AB25 2ZD Scotland, U.K
| | - Sergio Dall'Angelo
- Kosterlitz Centre for Therapeutics , University of Aberdeen , Foresterhill, Aberdeen , AB25 2ZD Scotland, U.K
| | - William T A Harrison
- Department of Chemistry , University of Aberdeen , Meston Walk, Aberdeen , AB24 3UE Scotland, U.K
| | | | - Ruth A Ross
- Department of Pharmacology & Toxicology , University of Toronto , Toronto M5S 1A8 , Canada
| | - Matteo Zanda
- Kosterlitz Centre for Therapeutics , University of Aberdeen , Foresterhill, Aberdeen , AB25 2ZD Scotland, U.K.,C.N.R. - I.C.R.M. , via Mancinelli 7 , 20131 Milan , Italy
| | - Iain R Greig
- Kosterlitz Centre for Therapeutics , University of Aberdeen , Foresterhill, Aberdeen , AB25 2ZD Scotland, U.K
| |
Collapse
|
21
|
Coughlin Q, Hopper AT, Blanco MJ, Tirunagaru V, Robichaud AJ, Doller D. Allosteric Modalities for Membrane-Bound Receptors: Insights from Drug Hunting for Brain Diseases. J Med Chem 2019; 62:5979-6002. [PMID: 30721063 DOI: 10.1021/acs.jmedchem.8b01651] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Medicinal chemists are accountable for embedding the appropriate drug target profile into the molecular architecture of a clinical candidate. An accurate characterization of the functional effects following binding of a drug to its biological target is a fundamental step in the discovery of new medicines, informing the translation of preclinical efficacy and safety observations into human trials. Membrane-bound proteins, particularly ion channels and G protein-coupled receptors (GPCRs), are biological targets prone to allosteric modulation. Investigations using allosteric drug candidates and chemical tools suggest that their functional effects may be tailored with a high degree of translational alignment, making them molecular tools to correct pathophysiological functional tone and enable personalized medicine when a causative target-to-disease link is known. We present select examples of functional molecular fine-tuning of allosterism and discuss consequences relevant to drug design.
Collapse
|
22
|
Pandey P, Roy KK, Doerksen RJ. Negative allosteric modulators of cannabinoid receptor 2: protein modeling, binding site identification and molecular dynamics simulations in the presence of an orthosteric agonist. J Biomol Struct Dyn 2019; 38:32-47. [PMID: 30652534 DOI: 10.1080/07391102.2019.1567384] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Selective activation of the cannabinoid receptor subtype 2 (CB2) shows promise for treating pain, inflammation, multiple sclerosis, cancer, ischemic/reperfusion injury and osteoporosis. Target selectivity and off-target side effects are two major limiting factors for orthosteric ligands, and therefore, the search for allosteric modulators (AMs) is a widely used drug discovery approach. To date, only a limited number of negative CB2 AMs have been identified, possessing only micromolar activity at best, and the CB2 receptor's allosteric site(s) are not well characterized. Herein, we used computational approaches including receptor modeling, site mapping, docking, molecular dynamics (MD) simulations and binding free energy calculations to predict, characterize and validate allosteric sites within the complex of the CB2 receptor with bound orthosteric agonist CP55,940. After docking of known negative CB2 allosteric modulators (NAMs), dihydro-gambogic acid (DHGA) and trans-β-caryophyllene (TBC) (note that TBC also shows agonist activity), at the predicted allosteric sites, the best total complex with CB2, CP55,940 and NAM was embedded into a hydrated lipid bilayer and subjected to a 200 ns MD simulation. The presence of an AM affected the CB2-CP55,940 complex, altering the relative positioning of the toggle switch residues and promoting a strong π-π interaction between Phe1173.36 and Trp2586.48. Binding of either TBC or DHGA to a putative allosteric pocket directly adjacent to the orthosteric ligand reduced the binding free energy of CP55,940, which is consistent with the expected effect of a negative AM. The identified allosteric sites present immense scope for the discovery of novel classes of CB2 AMs.
Collapse
Affiliation(s)
- Pankaj Pandey
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Kuldeep K Roy
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, The University of Mississippi, University, MS, USA.,National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Robert J Doerksen
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, The University of Mississippi, University, MS, USA.,Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| |
Collapse
|
23
|
Lafreniere J, Kelly M. Potential for endocannabinoid system modulation in ocular pain and inflammation: filling the gaps in current pharmacological options. Neuronal Signal 2018; 2:NS20170144. [PMID: 32714590 PMCID: PMC7373237 DOI: 10.1042/ns20170144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023] Open
Abstract
Challenges in the management of ocular pain are an underappreciated topic. Currently available therapeutics lack both efficacy and clear guidelines for their use, with many also possessing unacceptable side effects. Promising novel agents would offer analgesic, anti-inflammatory, and possibly neuroprotective actions; have favorable ocular safety profiles; and show potential in managing neuropathic pain. Growing evidence supports a link between the endocannabinoid system (ECS) and a range of physiological and disease processes, notably those involving inflammation and pain. Both preclinical and clinical data suggest analgesic and anti-inflammatory actions of cannabinoids and ECS-modifying drugs in chronic pain conditions, including those of neuropathic origin. This review will examine existing evidence for the anatomical and physiological basis of ocular pain, specifically, ocular surface disease and the development of chronic ocular pain. The mechanism of action, efficacy, and limitations of currently available treatments will be discussed, and current knowledge related to ECS-modulation of ocular pain and inflammatory disease will be summarized. A perspective will be provided on the future directions of ECS research in terms of developing cannabinoid therapeutics for ocular pain.
Collapse
Affiliation(s)
| | - Melanie E.M. Kelly
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
24
|
Endocannabinoids in Body Weight Control. Pharmaceuticals (Basel) 2018; 11:ph11020055. [PMID: 29849009 PMCID: PMC6027162 DOI: 10.3390/ph11020055] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Maintenance of body weight is fundamental to maintain one's health and to promote longevity. Nevertheless, it appears that the global obesity epidemic is still constantly increasing. Endocannabinoids (eCBs) are lipid messengers that are involved in overall body weight control by interfering with manifold central and peripheral regulatory circuits that orchestrate energy homeostasis. Initially, blocking of eCB signaling by first generation cannabinoid type 1 receptor (CB1) inverse agonists such as rimonabant revealed body weight-reducing effects in laboratory animals and men. Unfortunately, rimonabant also induced severe psychiatric side effects. At this point, it became clear that future cannabinoid research has to decipher more precisely the underlying central and peripheral mechanisms behind eCB-driven control of feeding behavior and whole body energy metabolism. Here, we will summarize the most recent advances in understanding how central eCBs interfere with circuits in the brain that control food intake and energy expenditure. Next, we will focus on how peripheral eCBs affect food digestion, nutrient transformation and energy expenditure by interfering with signaling cascades in the gastrointestinal tract, liver, pancreas, fat depots and endocrine glands. To finally outline the safe future potential of cannabinoids as medicines, our overall goal is to address the molecular, cellular and pharmacological logic behind central and peripheral eCB-mediated body weight control, and to figure out how these precise mechanistic insights are currently transferred into the development of next generation cannabinoid medicines displaying clearly improved safety profiles, such as significantly reduced side effects.
Collapse
|