1
|
Pal S, Firdous SM. Unraveling the role of heavy metals xenobiotics in cancer: a critical review. Discov Oncol 2024; 15:615. [PMID: 39495398 PMCID: PMC11535144 DOI: 10.1007/s12672-024-01417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer is a multifaceted disease characterized by the gradual accumulation of genetic and epigenetic alterations within cells, leading to uncontrolled cell growth and invasive behavior. The intricate interplay between environmental factors, such as exposure to carcinogens, and the molecular cascades governing cell growth, differentiation, and survival contributes to cancer's development and progression. This review offers a comprehensive overview of key molecular targets and their roles in cancer development. Peroxisome proliferator-activated receptors are implicated in various cancers due to their role in regulating lipid metabolism, inflammation, and cell proliferation. Nuclear factor erythroid 2-related factor 2 protects cells from oxidative damage but can also promote tumor cell survival. Cytochrome P450 1B1 metabolizes exogenous and endogenous substances, and its increased expression is observed in several cancers. The constitutive androstane receptor regulates gene expression, and its dysregulation can lead to liver cancer. Transforming growth factor-beta 2 is involved in the development and progression of various cancers by dysregulating cell proliferation, differentiation, and migration. Chelation treatment has been investigated for removing heavy metals, while genetically altered immune cells show promise in treating specific cancers. Metal-organic frameworks and fibronectin targeting represent new directions in cancer treatment. While some heavy metals, such as arsenic, chromium, nickel, and cadmium, are known to have carcinogenic properties, others, like zinc, Copper, gold, bismuth, and silver, have many uses that highlight their potential as effective cancer control tactics. There are a variety of heavy metal-based technologies that show potential for improving cancer treatment methods, including targeted drug delivery, improved radiation, and diagnostic tools.
Collapse
Affiliation(s)
- Sourav Pal
- Department of Pharmacology, Seacom Pharmacy College, Jaladhulagori, Sankrail, Howrah, West Bengal, 711302, India
| | - Sayed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, 711316, India.
| |
Collapse
|
2
|
Gao C, Duan R, Tian S, Pang C, Zhang H, Yang H, Hai X. Plasma protein binding of arsenic species in acute promyelocytic leukemia patients and their relationships with hepatic and renal function. Expert Rev Clin Pharmacol 2024; 17:1063-1069. [PMID: 39420768 DOI: 10.1080/17512433.2024.2417666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVES Percentage protein binding (%PB) of arsenic species in acute promyelocytic leukemia (APL) patients treated with arsenic trioxide remains unclear. It can be different depending on the status of hepatic or renal function. METHODS This study obtained steady-state blood samples from normal APL patients and those with hepatic or renal impairment. %PB of inorganic arsenic (iAs), monomethylarsonic acid (MMAV), and dimethylarsinic acid (DMAV) was determined by analyzing free and total plasma concentrations using ultrafiltration method by HPLC-HG-AFS. RESULTS There is a linear relationship between free and total plasma concentrations for iAs (r2 = 0.952), MMAV (r2 = 0.603), and DMAV (r2 = 0.945). For patients with normal hepatic and renal function, mean %PB was as follows: iAs at 26.7 ± 14.3%, MMAV at 53.3 ± 11.9%, and DMAV at 24.7 ± 7.8%. %PB decreased in patients with renal impairment, with MMAV and DMAV showing statistically significant differences (p < 0.05 for MMAV, p < 0.01 for DMAV). No significant differences in %PB between normal and hepatic impairment group were observed. CONCLUSION Free arsenic species fraction can be estimated by total concentration. DMAV and iAs present low %PB, while MMAV exhibits a relatively high %PB in plasma. Level of %PB is more likely to be affected by renal function and age.
Collapse
Affiliation(s)
- Chunlu Gao
- Department of Pharmacy, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Rui Duan
- Department of Pharmacy, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shuo Tian
- Department of Pharmacy, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chunrong Pang
- Department of Pharmacy, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hong Zhang
- Department of Pharmacy, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Haixia Yang
- Department of Pharmacy, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xin Hai
- Department of Pharmacy, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Shi L, Lu J, Xia X, Liu X, Li H, Li X, Zhu J, Li X, Sun H, Yang X. Clinically used drug arsenic trioxide targets XIAP and overcomes apoptosis resistance in an organoid-based preclinical cancer model. Chem Sci 2024; 15:8311-8322. [PMID: 38846391 PMCID: PMC11151819 DOI: 10.1039/d4sc01294a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Drug resistance in tumor cells remains a persistent clinical challenge in the pursuit of effective anticancer therapy. XIAP, a member of the inhibitor of apoptosis protein (IAP) family, suppresses apoptosis via its Baculovirus IAP Repeat (BIR) domains and is responsible for drug resistance in various human cancers. Therefore, XIAP has attracted significant attention as a potential therapeutic target. However, no XIAP inhibitor is available for clinical use to date. In this study, we surprisingly observed that arsenic trioxide (ATO) induced a rapid depletion of XIAP in different cancer cells. Mechanistic studies revealed that arsenic attacked the cysteine residues of BIR domains and directly bound to XIAP, resulting in the release of zinc ions from this protein. Arsenic-XIAP binding suppressed the normal anti-apoptosis functions of BIR domains, and led to the ubiquitination-dependent degradation of XIAP. Importantly, we further demonstrate that arsenic sensitized a variety of apoptosis-resistant cancer cells, including patient-derived colon cancer organoids, to the chemotherapy drug using cisplatin as a showcase. These findings suggest that targeting XIAP with ATO offers an attractive strategy for combating apoptosis-resistant cancers in clinical practice.
Collapse
Affiliation(s)
- Liwa Shi
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai 519000 China
| | - Jing Lu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai 519000 China
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
| | - Xin Xia
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai 519000 China
| | - Xue Liu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai 519000 China
| | - Hongyan Li
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR China
| | - Xinghua Li
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
| | - Jun Zhu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai 519000 China
| | - Xiaofeng Li
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
| | - Hongzhe Sun
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR China
| | - Xinming Yang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai 519000 China
| |
Collapse
|
4
|
Yang Y, Li Y, Li R, Wang Z. Research progress on arsenic, arsenic-containing medicinal materials, and arsenic-containing preparations: clinical application, pharmacological effects, and toxicity. Front Pharmacol 2024; 15:1338725. [PMID: 38495096 PMCID: PMC10943982 DOI: 10.3389/fphar.2024.1338725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction: The toxicity of arsenic is widely recognized globally, mainly harming human health by polluting water, soil, and food. However, its formulations can also be used for the clinical treatment of diseases such as leukemia and tumors. Arsenic has been used as a drug in China for over 2,400 years, with examples such as the arsenic-containing drug realgar mentioned in Shennong's Herbal Classic. We have reviewed references on arsenic over the past thirty years and found that research has mainly focused on clinical, pharmacological, and toxicological aspects. Results and Discussion: The finding showed that in clinical practice, arsenic trioxide is mainly used in combination with all-trans retinoic acid (ATRA) at a dose of 10 mg/d for the treatment of acute promyelocytic leukemia (APL); realgar can be used to treat acute promyelocytic leukemia, myelodysplastic syndrome, and lymphoma. In terms of pharmacology, arsenic mainly exerts anti-tumor effects. The dosage range of the action is 0.01-80 μmol/L, and the concentration of arsenic in most studies does not exceed 20 μmol/L. The pharmacological effects of realgar include antiviral activity, inhibition of overactivated lactate dehydrogenase, and resistance to malaria parasites. In terms of toxicity, arsenic is toxic to multiple systems in a dose-dependent manner. For example, 5 μmol/L sodium arsenite can induce liver oxidative damage and promote the expression of pro-inflammatory factors, and 15 μmol/L sodium arsenite induces myocardial injury; when the concentration is higher, it is more likely to cause toxic damage.
Collapse
Affiliation(s)
- Yichu Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiye Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ran Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Lv J, Wu M, Pang C, Duan R, Zhang H, Tian S, Yang H, Hai X. Torsemide increases arsenic concentrations by inhibition of multidrug resistance protein 4 in arsenic trioxide treated acute promyelocytic leukemia patients. Biomed Pharmacother 2023; 163:114858. [PMID: 37172335 DOI: 10.1016/j.biopha.2023.114858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/14/2023] Open
Abstract
Torsemide is commonly used to relieve edema during the treatment of acute promyelocytic leukemia (APL) with arsenic trioxide (ATO). We explored the effect of torsemide on the plasma concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMAV) and dimethyarsinic acid (DMAV) in APL patients treated with ATO and clarified its molecular mechanism in rats and cells. The study included 146 APL patients treated with ATO. 60(41.1 %) of these 146 patients were co-administered with torsemide. The treatment of torsemide increased plasma concentrations of iAs (P < 0.05) and DMAV (P < 0.05) in APL patients. The single co-administration of ATO and torsemide in rats significantly increased the plasma concentrations and AUC(0-t) of iAs (P < 0.05) and MMAV (P < 0.05), decreased the urinary excretion rates and the urine concentrations of iAs (P < 0.05) and DMAV (P < 0.05), and enhanced iAs (P < 0.05) and MMAV (P < 0.05) concentrations in the kidneys of rats. In addition, torsemide decreased the expression of multidrug resistance protein 4 (MRP4) in rat kidneys after 7 days of continuous co-administration (P < 0.05). We also treated MRP4-overexpressing HEK293T cells with ATO and different concentrations of torsemide. Torsemide markedly increased the concentrations of iAs, MMAV and DMAV by inhibiting MRP4 compared with ATO alone (P < 0.05). In conclusion, torsemide increased the plasma concentrations of arsenic metabolites in APL patients treated with ATO by inhibiting the transporter MRP4 in a dose-dependent manner.
Collapse
Affiliation(s)
- Jian Lv
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, 23 YouZheng Str, Nangang District, Harbin, China
| | - Mengliang Wu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chunrong Pang
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, 23 YouZheng Str, Nangang District, Harbin, China
| | - Rui Duan
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, 23 YouZheng Str, Nangang District, Harbin, China
| | - Hong Zhang
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, 23 YouZheng Str, Nangang District, Harbin, China
| | - Shuo Tian
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haixia Yang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xin Hai
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, 23 YouZheng Str, Nangang District, Harbin, China.
| |
Collapse
|
6
|
Wu M, Pang C, Lu S, Hostetter TH, Hai X. Type 2 diabetes affects arsenic metabolism via transporters in arsenic trioxide treated acute promyelocytic leukemia patients. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104142. [PMID: 37146668 DOI: 10.1016/j.etap.2023.104142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Our study aimed to explore whether type 2 diabetes (T2DM) can affect arsenic metabolism in acute promyelocytic leukemia (APL) patients treated with arsenic trioxide. We found that compared with non-diabetic APL patients, the concentrations of arsenic metabolites in APL patients with T2DM increased significantly and positively correlated with blood glucose (P < 0.05). Meanwhile, APL patients with T2DM were more prone to liver injury and QTc interval prolongation due to altered arsenic methylation capacity. Then we cultured HEK293T cells at different glucose concentrations, and the results showed that the cells with high glucose had higher concentrations of arsenic metabolites compared to other cells. Meanwhile, the high glucose significantly increased the mRNA and protein expression levels of the arsenic uptake transporter AQP7 in HEK293T cells. Overall, our study demonstrated that T2DM can lead to elevated concentrations of arsenic metabolites in APL patients by increasing AQP7 expression.
Collapse
Affiliation(s)
- Mengliang Wu
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, 23 YouZheng Str, Nangang District, Harbin, China; Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Chunrong Pang
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, 23 YouZheng Str, Nangang District, Harbin, China
| | - Shengwen Lu
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Thomas H Hostetter
- School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Xin Hai
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, 23 YouZheng Str, Nangang District, Harbin, China.
| |
Collapse
|
7
|
Grochowska KM, Gomes GM, Raman R, Kaushik R, Sosulina L, Kaneko H, Oelschlegel AM, Yuanxiang P, Reyes‐Resina I, Bayraktar G, Samer S, Spilker C, Woo MS, Morawski M, Goldschmidt J, Friese MA, Rossner S, Navarro G, Remy S, Reissner C, Karpova A, Kreutz MR. Jacob-induced transcriptional inactivation of CREB promotes Aβ-induced synapse loss in Alzheimer's disease. EMBO J 2023; 42:e112453. [PMID: 36594364 PMCID: PMC9929644 DOI: 10.15252/embj.2022112453] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023] Open
Abstract
Synaptic dysfunction caused by soluble β-amyloid peptide (Aβ) is a hallmark of early-stage Alzheimer's disease (AD), and is tightly linked to cognitive decline. By yet unknown mechanisms, Aβ suppresses the transcriptional activity of cAMP-responsive element-binding protein (CREB), a master regulator of cell survival and plasticity-related gene expression. Here, we report that Aβ elicits nucleocytoplasmic trafficking of Jacob, a protein that connects a NMDA-receptor-derived signalosome to CREB, in AD patient brains and mouse hippocampal neurons. Aβ-regulated trafficking of Jacob induces transcriptional inactivation of CREB leading to impairment and loss of synapses in mouse models of AD. The small chemical compound Nitarsone selectively hinders the assembly of a Jacob/LIM-only 4 (LMO4)/ Protein phosphatase 1 (PP1) signalosome and thereby restores CREB transcriptional activity. Nitarsone prevents impairment of synaptic plasticity as well as cognitive decline in mouse models of AD. Collectively, the data suggest targeting Jacob protein-induced CREB shutoff as a therapeutic avenue against early synaptic dysfunction in AD.
Collapse
Affiliation(s)
- Katarzyna M Grochowska
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
- Leibniz Group ‘Dendritic Organelles and Synaptic Function’, Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Guilherme M Gomes
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
- Center for Behavioral Brain SciencesOtto von Guericke UniversityMagdeburgGermany
| | - Rajeev Raman
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Rahul Kaushik
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Liudmila Sosulina
- Department of Cellular NeuroscienceLeibniz Institute for NeurobiologyMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Hiroshi Kaneko
- Department of Cellular NeuroscienceLeibniz Institute for NeurobiologyMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | | | - PingAn Yuanxiang
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
| | | | - Gonca Bayraktar
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Sebastian Samer
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Christina Spilker
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Marcel S Woo
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Markus Morawski
- Molecular Imaging in NeurosciencesPaul Flechsig Institute of Brain ResearchLeipzigGermany
| | - Jürgen Goldschmidt
- Department of Systems Physiology of Learning and MemoryLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Steffen Rossner
- Molecular Imaging in NeurosciencesPaul Flechsig Institute of Brain ResearchLeipzigGermany
| | - Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food ScienceUniversity of BarcelonaBarcelonaSpain
- Institut de Neurociències de la Universitat de BarcelonaBarcelonaSpain
| | - Stefan Remy
- Center for Behavioral Brain SciencesOtto von Guericke UniversityMagdeburgGermany
- Department of Cellular NeuroscienceLeibniz Institute for NeurobiologyMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Carsten Reissner
- Institute of Anatomy and Molecular NeurobiologyWestfälische Wilhelms‐UniversityMünsterGermany
| | - Anna Karpova
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
- Center for Behavioral Brain SciencesOtto von Guericke UniversityMagdeburgGermany
| | - Michael R Kreutz
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
- Leibniz Group ‘Dendritic Organelles and Synaptic Function’, Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
- Center for Behavioral Brain SciencesOtto von Guericke UniversityMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| |
Collapse
|
8
|
Jiang YZ, Wei ZL, Wang NN, Huang C, Huang J, Yan JW, Wang R, Yu ZZ, Huang DP. Clinical characteristics of a patient with de novo acute promyelocytic leukemia with JAK2 v617f mutation. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:1290-1293. [PMID: 36476114 DOI: 10.1080/16078454.2022.2153200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The V617F mutation of Janus-associated kinase 2 (JAK2) is common in myeloproliferative neoplasms (MPN). JAK2 V617F mutation can be detected in patients with de novo acute myeloid leukemia (AML), but de novo acute promyelocytic leukemia (APL) with JAK2 V617F mutation is rare. CASE PRESENTATION We report a case of APL with both the t(15;17) translocation as well as the JAK2 V617F mutation that transformed into MPN (PV/ET). CONCLUSIONS A de novo APL patient presented initially with JAK2 V617F. After ATRA and ATO dual induction and chemotherapy consolidation, the patient achieved complete remission (CR) with undetectable PML/RARα. However, the JAK2 V617F remained positive, and the patient developed MPN (PV/ET) 22 months later, which responded well to interferon therapy.AML, acute myeloid leukemia; APL, acute promyelocytic leukemia; ATRA, all-trans retinoic acid; ATO, arsenic trioxide; BM, bone marrow; CR, complete remission; ET, essential thrombocythemia; Hb, hemoglobin; JAK2, Janus-associated kinase 2; MPN, myeloproliferative neoplasms; PLT, platelets; PMF, primary myelofibrosis; PML/RARα; PV, polycythemia vera; WBC, white blood cells.
Collapse
Affiliation(s)
- Yi-Zhi Jiang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, People's Republic of China
| | - Zhong-Ling Wei
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, People's Republic of China
| | - Na-Na Wang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, People's Republic of China
| | - Chen Huang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, People's Republic of China
| | - Jun Huang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, People's Republic of China
| | - Jia-Wei Yan
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, People's Republic of China
| | - Ran Wang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, People's Republic of China
| | - Zheng-Zhi Yu
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, People's Republic of China
| | - Dong-Ping Huang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, People's Republic of China
| |
Collapse
|
9
|
The Development and Clinical Applications of Oral Arsenic Trioxide for Acute Promyelocytic Leukaemia and Other Diseases. Pharmaceutics 2022; 14:pharmaceutics14091945. [PMID: 36145693 PMCID: PMC9504237 DOI: 10.3390/pharmaceutics14091945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Appreciation of the properties of arsenic trioxide (ATO) has redefined the treatment landscape for acute promyelocytic leukaemia (APL) and offers promise as a treatment for numerous other diseases. The benefits of ATO in patients with APL is related to its ability to counteract the effects of PML::RARA, an oncoprotein that is invariably detected in the blood or bone marrow of affected individuals. The PML::RARA oncoprotein is degraded specifically by binding to ATO. Thus ATO, in combination with all-trans retinoic acid, has become the curative treatment for ATO. The multiple mechanisms of action of ATO has also paved the way for application in various condition encompassing autoimmune or inflammatory disorders, solid organ tumours, lymphomas and other subtypes of AML. The development of oral formulation of ATO (oral ATO) has reduced costs of treatment and improved treatment convenience allowing widespread applicability. In this review, we discuss the mechanisms of action of ATO, the development of oral ATO, and the applications of oral ATO in APL and other diseases.
Collapse
|
10
|
Guo M, Lv J, Chen X, Wu M, Zhao Q, Hai X. Arsenic Trioxide Therapy During Pregnancy: ATO and Its Metabolites in Maternal Blood and Amniotic Fluid of Acute Promyelocytic Leukemia Patients. Front Oncol 2022; 12:887026. [PMID: 35646703 PMCID: PMC9133345 DOI: 10.3389/fonc.2022.887026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/13/2022] [Indexed: 12/05/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is extremely fatal if treatment is delayed. Management of APL in pregnancy is a challenging situation. Arsenic trioxide (ATO) is successfully applied to treat APL. ATO can be transformed into different arsenic species [arsenite (AsIII), monomethylated arsenic (MMA, consists of MMAIII and MMAV), dimethylated arsenic (DMA, consists of DMAIII and DMAV), and arsenate (AsV)], which produce different toxic effects. Investigating the maternal and fetal exposure to arsenic species is critical in terms of assessing maternal and fetal outcomes, choice of optimal treatment, and making decisions for attempting to preserve the obstetrical and fetal wellbeing. In this study, maternal blood and amniotic fluid (AF) from APL patients treated with ATO in pregnancy and blood samples of non-pregnant patients were collected. Concentrations of inorganic arsenic (iAs, iAs = AsIII+AsV), MMA, and DMA were analyzed by high-performance liquid chromatography–hydride generation–atomic fluorescence spectrometry (HPLC–HG–AFS). The difference in arsenic species of plasma between pregnant patients and non-pregnant patients, distribution of arsenic compounds in AF and maternal plasma, and arsenic penetration into AF were explored. The outcomes of pregnant women treated with ATO and their fetus were analyzed. No significant differences in arsenic concentration, percentage, and methylation index [PMI: primary methylation index (MMA/iAs); SMI: secondary methylation index (DMA/MMA)] between pregnant women and non-pregnant women (p > 0.05) were observed. The mean ratios of AF to maternal plasma were as follows: iAs, 2.09; DMA, 1.04; MMA, 0.49; and tAs, 0.98. Abortion rate is higher with the diagnosis at an earlier gestational age, with 0%, 67%, and 100% of pregnancies ending in abortion during the third, second, and first trimester, respectively. The age of the pregnant women, the dose of ATO, and the duration of fetal exposure in utero had no influence on fetal outcomes. All APL women achieved complete remission (CR). Collectively, ATO and its metabolites can easily cross the placenta. Levels and distribution of arsenic species in maternal plasma and AF gave evidence that arsenic species had a different ability to penetrate the placenta into AF (iAs > DMA > MMA) and indicated a relatively high fetal exposure to ATO and its metabolites in utero. Gestational age at diagnosis was more likely to be closely related to fetal outcomes, but had no effects on mother outcomes.
Collapse
Affiliation(s)
- Meihua Guo
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jian Lv
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaotong Chen
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mengliang Wu
- Department of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qilei Zhao
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Hai
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Thakur M, Rachamalla M, Niyogi S, Datusalia AK, Flora SJS. Molecular Mechanism of Arsenic-Induced Neurotoxicity including Neuronal Dysfunctions. Int J Mol Sci 2021; 22:10077. [PMID: 34576240 PMCID: PMC8471829 DOI: 10.3390/ijms221810077] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Arsenic is a key environmental toxicant having significant impacts on human health. Millions of people in developing countries such as Bangladesh, Mexico, Taiwan, and India are affected by arsenic contamination through groundwater. Environmental contamination of arsenic leads to leads to various types of cancers, coronary and neurological ailments in human. There are several sources of arsenic exposure such as drinking water, diet, wood preservatives, smoking, air and cosmetics, while, drinking water is the most explored route. Inorganic arsenic exhibits higher levels of toxicity compared its organic forms. Exposure to inorganic arsenic is known to cause major neurological effects such as cytotoxicity, chromosomal aberration, damage to cellular DNA and genotoxicity. On the other hand, long-term exposure to arsenic may cause neurobehavioral effects in the juvenile stage, which may have detrimental effects in the later stages of life. Thus, it is important to understand the toxicology and underlying molecular mechanism of arsenic which will help to mitigate its detrimental effects. The present review focuses on the epidemiology, and the toxic mechanisms responsible for arsenic induced neurobehavioral diseases, including strategies for its management from water, community and household premises. The review also provides a critical analysis of epigenetic and transgenerational modifications, mitochondrial oxidative stress, molecular mechanisms of arsenic-induced oxidative stress, and neuronal dysfunction.
Collapse
Affiliation(s)
- Manisha Thakur
- Department of Pharmacology and Toxicology, Transit Campus, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India; (M.T.); (A.K.D.)
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (M.R.); (S.N.)
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (M.R.); (S.N.)
- Toxicology Centre, Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, Transit Campus, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India; (M.T.); (A.K.D.)
| | - Swaran Jeet Singh Flora
- Department of Pharmacology and Toxicology, Transit Campus, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India; (M.T.); (A.K.D.)
| |
Collapse
|
12
|
Wang QQ, Hua HY, Naranmandura H, Zhu HH. Balance between the toxicity and anticancer activity of arsenic trioxide in treatment of acute promyelocytic leukemia. Toxicol Appl Pharmacol 2020; 409:115299. [DOI: 10.1016/j.taap.2020.115299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 12/11/2022]
|
13
|
Maimaitiyiming Y, Wang QQ, Hsu CH, Naranmandura H. Arsenic induced epigenetic changes and relevance to treatment of acute promyelocytic leukemia and beyond. Toxicol Appl Pharmacol 2020; 406:115212. [PMID: 32882258 DOI: 10.1016/j.taap.2020.115212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Epigenetic alterations regulate gene expression without changes in the DNA sequence. It is well-demonstrated that aberrant epigenetic changes contribute to the leukemogenesis of acute promyelocytic leukemia (APL). Arsenic trioxide (ATO) is one of the most common drugs used in the frontline treatment of APL that act through targeting and destabilizing the PML/RARα oncofusion protein. ATO together with all-trans retinoic acid (ATRA) lead to durable remission of more than 90% non-high-risk APL patients, turning APL treatment into a paradigm of oncoprotein targeted cure. Although relapse and drug resistance in APL are yet to be resolved in the clinic, epigenetic machineries might hold the key to address this issue. Further, ATO also showed promising anticancer activities against a variety of malignancies, but its application is particularly restricted due to limited understanding of the mechanism. Thus, a thorough understanding of epigenetic mechanism behind anti-leukemic effects of ATO would benefit the development of ATO-based anticancer strategy. Role of ATRA on APL associated epigenetic alterations has been extensively studied and reviewed. Recently, accumulating evidence suggest that ATO also induces some epigenetic changes that might favor APL eradication. In this article, we comprehensively discuss arsenic induced epigenetic changes and its relevance in APL treatment and beyond, so as to provide novel insights into overcoming arsenic resistance in APL and promote application of this drug to other malignancies.
Collapse
Affiliation(s)
- Yasen Maimaitiyiming
- Department of Hematology of First Affiliated Hospital, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Qian Wang
- Department of Hematology of First Affiliated Hospital, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Chih-Hung Hsu
- Department of Public Health, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|