1
|
Dalei G, Das S. Polyacrylic acid-based drug delivery systems: A comprehensive review on the state-of-art. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Glaucoma Treatment and Hydrogel: Current Insights and State of the Art. Gels 2022; 8:gels8080510. [PMID: 36005112 PMCID: PMC9407420 DOI: 10.3390/gels8080510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Aqueous gels formulated using hydrophilic polymers (hydrogels) and those based on stimuli-responsive polymers (in situ gelling or gel-forming systems) attract increasing interest in the treatment of several eye diseases. Their chemical structure enables them to incorporate various ophthalmic medications, achieving their optimal therapeutic doses and providing more clinically relevant time courses (weeks or months as opposed to hours and days), which will inevitably reduce dose frequency, thereby improving patient compliance and clinical outcomes. Due to its chronic course, the treatment of glaucoma may benefit from applying gel technologies as drug-delivering systems and as antifibrotic treatment during and after surgery. Therefore, our purpose is to review current applications of ophthalmic gelling systems with particular emphasis on glaucoma.
Collapse
|
3
|
Optimization of the Micellar-Based In Situ Gelling Systems Posaconazole with Quality by Design (QbD) Approach and Characterization by In Vitro Studies. Pharmaceutics 2022; 14:pharmaceutics14030526. [PMID: 35335902 PMCID: PMC8954786 DOI: 10.3390/pharmaceutics14030526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Fungal ocular infections can cause serious consequences, despite their low incidence. It has been reported that Posaconazole (PSC) is used in the treatment of fungal infections in different ocular tissues by diluting the oral suspension, and successful results were obtained despite low ocular permeation. Therefore, we optimized PSC-loaded ocular micelles and demonstrated that the permeation/penetration of PSC in ocular tissues was enhanced. Methods: The micellar-based in situ gels based on the QbD approach to increase the ocular bioavailability of PSC were developed. Different ratios of Poloxamer 407 and Poloxamer 188 were chosen as CMAs. Tsol/gel, gelling capacity and rheological behavior were chosen as CQA parameters. The data were evaluated by Minitab 18, and the formulations were optimized with the QbD approach. The in vitro release study, ocular toxicity, and anti-fungal activity of the optimized formulation were performed. Results: Optimized in situ gel shows viscoelastic property and becomes gel form at physiological temperatures even when diluted with the tear film. In addition, it has been shown that the formulation had high anti-fungal activity and did not have any ocular toxicity. Conclusions: In our previous studies, PSC-loaded ocular micelles were developed and optimized for the first time in the literature. With this study, the in situ gels of PSC for ocular application were developed and optimized for the first time. The optimized micellar-based in situ gel is a promising drug delivery system that may increase the ocular permeation and bioavailability of PSC.
Collapse
|
4
|
|
5
|
Dang LH, Doan P, Nhi TTY, Nguyen DT, Nguyen BT, Nguyen TP, Tran NQ. Multifunctional injectable pluronic-cystamine-alginate-based hydrogel as a novel cellular delivery system towards tissue regeneration. Int J Biol Macromol 2021; 185:592-603. [PMID: 34216661 DOI: 10.1016/j.ijbiomac.2021.06.183] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/18/2021] [Accepted: 06/26/2021] [Indexed: 10/21/2022]
Abstract
This paper presents a new thermal sensitive hydrogel system based on cystamine-functionalised sodium alginate-g-pluronic F127 (ACP). The introduction of cystamine to the alginate backbone not only creates a covalent bond with pluronic F127 but also provides intrinsic anti-bacterial activity for the resultant hydrogel. The amount of water uptake inside the hydrogel remained ~200% for 6 days and the degradation was completed in 12 days in physiological media. The ACP copolymer solution could form a hydrogel at body temperature (~37 °C) and could return to the solution phase if the temperature decreased below 25o °C. Fibroblast encapsulated in situ in the ACP hydrogel maintained their viability (≥90% based on the live/dead assay) for 7 days, demonstrating the good biocompatibility of the ACP hydrogel for long-term cell cultivation. In addition, three-dimensional (3D) culture showed that fibroblast attached to the hydrogels and successfully mimicked the porous structure of the ACP hydrogel after 5 days of culture. Fibroblast cells could migrate from the cell-ACP clusters and form a confluent cell layer on the surface of the culture dish. Altogether, the obtained results indicate that the thermal-responsive ACP hydrogel synthesised in this study may serve as a cellular delivery platform for diverse tissue engineering applications.
Collapse
Affiliation(s)
- Le Hang Dang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, HCMC, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, HCMC, Viet Nam.
| | - Phuong Doan
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, HCMC, Viet Nam
| | - Tran Thi Yen Nhi
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, HCMC, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Dinh Trung Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, HCMC, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, HCMC, Viet Nam
| | - Bich Tram Nguyen
- Department of Natural Science, Thu Dau Mot University, Thu Dau Mot City, Viet Nam
| | - Thi Phuong Nguyen
- Faculty of Chemical Technology, HCMC University of Food Industry, Ho Chi Minh City, Viet Nam
| | - Ngoc Quyen Tran
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, HCMC, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, HCMC, Viet Nam.
| |
Collapse
|
6
|
Zhang H, Ma S, Zhang Q, Cao M, Wang Y, Gu Y, Xu X. Thermoreversible and Self-Protective Sol-Gel Transition Electrolytes for All-Printed Transferable Microsupercapacitors as Safer Micro-Energy Storage Devices. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41819-41831. [PMID: 32812744 DOI: 10.1021/acsami.0c10624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The safety issue caused by thermal runaway poses a huge threat toward the lifespan and application of high-density electrochemical energy storage devices, especially in the field of micro-energy, such as microsupercapacitors (MSCs). The heat accumulation is difficult to be eliminated, considering the narrow space inside integrated electronic devices attached to the MSC group. Active thermal management is of paramount importance to ensure the normal operation of electronic devices. However, existing one-time thermal protection strategies cannot fully meet current requirements. Herein, we report a promising thermoreversible temperature-responsive electrolyte system, which can shut down the current flow before thermal runaway occurs, thanks to the sol-gel transition of Pluronic [poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide)]-based graft copolymer solution. As the temperature rises to 80 °C, the self-protective electrolyte will change from the sol state to gel state. Meanwhile, the internal resistance increases and ionic conductivity decreases gradually as a result of the gelation of the sol electrolyte. The capacity of the energy storage device using the self-protective electrolyte is reduced by about 95%, and the ionic conductivity remains at only 1% at 80 °C compared with the initial value at room temperature, and it can be restored after cooling down. During 20 heating/cooling cycles, the electrochemical performance is substantially stable, demonstrating a potential approach to achieve repeatability and self-protection for micro-energy storage devices according to temperature changes. In addition, we integrated the as-prepared self-protective electrolyte into MSCs via three-dimensional printing technology to design an all-printed transferable micro-energy storage device with the dynamic reversible self-protection behavior, and the thermo-switchable protection mechanism under series and parallel conditions were studied under appropriate temperature window (25-80 °C). The strategy disclosed herein is expected to provide new insights into the new-generation smart MSCs for their wide applications in diverse fields such as microelectronics and wearable devices.
Collapse
Affiliation(s)
- Hao Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
| | - Shaoshuai Ma
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
| | - Qian Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
| | - Mingchao Cao
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
| | - Yutian Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
| | - Yifan Gu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
| | - Xinhua Xu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
7
|
Noreen S, Ghumman SA, Batool F, Ijaz B, Basharat M, Noureen S, Kausar T, Iqbal S. Terminalia arjuna gum/alginate in situ gel system with prolonged retention time for ophthalmic drug delivery. Int J Biol Macromol 2019; 152:1056-1067. [PMID: 31751751 DOI: 10.1016/j.ijbiomac.2019.10.193] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 02/03/2023]
Abstract
Poor availability is the major barrier to accept the new smart gel system as a preferred ophthalmic solution for various eye problems. Smart gel system especially derived from natural source allows the rapid transition of ocular solution into gel form upon contact to tear solution. The present experimental scheme was intended to prepare and characterize a pH triggered in situ gelling system using moxifloxacin HCl (MOX-HCl). Gum was extracted from Terminalia arjuna bark resin and used as gelling agent in blend with sodium alginate. Sterilized formulations were developed and characterized for their physicochemical attributes. These were further investigated for microbiological testing and eye irritation studies. Drug loaded in situ gel was appeared as clear sol that converted into gel phase in presence of tear solution. Optimized formulation was stable, therapeutically efficacious, non-irritant and has a sustained release of the drug for twelve hours period. Instillation of MOX-HCl loaded in situ gel did not cause any type of irritation symptoms like redness, inflammation and excessive tear production in rabbits as compared to control. MOX-HCl loaded in situ gel can be appraised as a substitute for conventional eye drops for extended precorneal retention, improved corneal permeability along with better ocular bioavailability.
Collapse
Affiliation(s)
- Sobia Noreen
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom.
| | | | - Fozia Batool
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore 53700, Pakistan
| | - Maryam Basharat
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Shazia Noureen
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Tusneem Kausar
- Department of Food Sciences and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Shahid Iqbal
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| |
Collapse
|
8
|
Sharma M, Deohra A, Reddy KR, Sadhu V. Biocompatible in-situ gelling polymer hydrogels for treating ocular infection. J Microbiol Methods 2019. [DOI: 10.1016/bs.mim.2019.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Ophthalmic gels: Past, present and future. Adv Drug Deliv Rev 2018; 126:113-126. [PMID: 29288733 DOI: 10.1016/j.addr.2017.12.017] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/06/2017] [Accepted: 12/22/2017] [Indexed: 11/21/2022]
Abstract
Aqueous gels formulated using hydrophilic polymers (hydrogels) along with those based on stimuli responsive polymers (in situ gelling or gel forming systems) continue to attract increasing interest for various eye health-related applications. They allow the incorporation of a variety of ophthalmic pharmaceuticals to achieve therapeutic levels of drugs and bioactives at target ocular sites. The integration of sophisticated drug delivery technologies such as nanotechnology-based ones with intelligent and environment responsive systems can extend current treatment duration to provide more clinically relevant time courses (weeks and months instead of hours and days) which will inevitably reduce dose frequency, increase patient compliance and improve clinical outcomes. Novel applications and design of contact lenses and intracanalicular delivery devices along with the move towards integrating gels into various drug delivery devices like intraocular pumps, injections and implants has the potential to reduce comorbidities caused by glaucoma, corneal keratopathy, cataract, diabetic retinopathies and age-related macular degeneration. This review describes ophthalmic gelling systems with emphasis on mechanism of gel formation and application in ophthalmology. It provides a critical appraisal of the techniques and methods used in the characterization of ophthalmic preformed gels and in situ gelling systems along with a thorough insight into the safety and biocompatibility of these systems. Newly developed ophthalmic gels, hydrogels, preformed gels and in situ gelling systems including the latest in the area of stimuli responsive gels, molecularly imprinted gels, nanogels, 3D printed hydrogels; 3D printed devices comprising ophthalmic gels are covered. Finally, new applications of gels in the production of artificial corneas, corneal wound healing and hydrogel contact lenses are described.
Collapse
|
10
|
Quintana G, Simões M, Hugo A, Alves P, Ferreira P, Gerbino E, Simões P, Gómez-Zavaglia A. Layer-by-layer encapsulation of Lactobacillus delbrueckii subsp. Bulgaricus using block-copolymers of poly(acrylic acid) and pluronic for safe release in gastro-intestinal conditions. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
Pescina S, Macaluso C, Gioia GA, Padula C, Santi P, Nicoli S. Mydriatics release from solid and semi-solid ophthalmic formulations using different in vitro methods. Drug Dev Ind Pharm 2017; 43:1472-1479. [PMID: 28426341 DOI: 10.1080/03639045.2017.1318910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The aim of the present paper was the development of semi-solid (hydrogels) and solid (film) ophthalmic formulations for the controlled release of two mydriatics: phenylephrine and tropicamide. The formulations - based on polyvinylalcohol and hyaluronic acid - were characterized, and release studies were performed with three different in vitro set-ups, i.e. Franz-type diffusion cell, vial method and inclined plane; for comparison, a solution and a commercial insert, both clinically used to induce mydriasis, were evaluated. Both gels and film allowed for a controlled release of drugs, appearing a useful alternative for mydriatics administration. However, the release kinetic was significantly influenced by the method used, highlighting the need for optimization and standardization of in vitro models for the evaluation of drug release from ophthalmic dosage forms.
Collapse
Affiliation(s)
- Silvia Pescina
- a Food and Drug Department , University of Parma , Parma , Italy
| | - Claudio Macaluso
- b Ophthalmology Department, DiMeC , University of Parma , Parma , Italy
| | | | - Cristina Padula
- a Food and Drug Department , University of Parma , Parma , Italy
| | - Patrizia Santi
- a Food and Drug Department , University of Parma , Parma , Italy
| | - Sara Nicoli
- a Food and Drug Department , University of Parma , Parma , Italy
| |
Collapse
|
12
|
Sousa J, Alves G, Oliveira P, Fortuna A, Falcão A. Intranasal delivery of ciprofloxacin to rats: A topical approach using a thermoreversible in situ gel. Eur J Pharm Sci 2016; 97:30-37. [PMID: 27810560 DOI: 10.1016/j.ejps.2016.10.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/05/2016] [Accepted: 10/30/2016] [Indexed: 11/28/2022]
Abstract
Intranasal administration of antibiotics is an alternative and attractive delivery approach in the treatment of local infections such as chronic rhinosinusitis. This topical route has the advantage of delivering high drug concentrations directly to the site of infection when trying to eradicate the highly resistant bacterial biofilms. The purpose of this study was to assess and compare the pharmacokinetic parameters of ciprofloxacin following intranasal and intravenous administrations to rats in plasma, olfactory bulb and nasal mucosa of two different nasal regions. For intranasal administration a thermoreversible in situ gel was used to increase drug residence time in nasal cavity. Ciprofloxacin concentration time-profile in nasal mucosa of the studied anterior region (at naso- and maxilloturbinates level) was markedly higher after intranasal administration (0.24mg/kg) than that following intravenous administration (10mg/kg), while in nasal mucosa of the more posterior region (at ethmoidal turbinates level) ciprofloxacin concentrations were found to be higher after intranasal administration when the different dose administered by both routes is taken into account. A plateau in ciprofloxacin concentration was observed in nasal mucosa of both studied regions after intranasal administration, suggesting a slow delivery of the drug over a period of time using the nasal gel formulation. In plasma and olfactory bulb, concentration of ciprofloxacin was residual after intranasal administration, which demonstrates this is a safe administration route by preventing systemic and particularly central nervous system adverse effects. Dose-normalized pharmacokinetic parameters of ciprofloxacin exposure to nasal mucosa revealed higher values after intranasal delivery not only in the anterior region but also in the posterior nasal region. In conclusion, topical intranasal administration appears to be advantageous for delivering ciprofloxacin to the biophase, with negligible systemic and brain exposure using a 41.7-fold lower dose than intravenous administration. Therefore, it may represent a promising approach in the drug management of chronic rhinosinusitis.
Collapse
Affiliation(s)
- Joana Sousa
- Pharmacology Department, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Gilberto Alves
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal.
| | - Paula Oliveira
- Pharmacology Department, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ana Fortuna
- Pharmacology Department, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Amílcar Falcão
- Pharmacology Department, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
13
|
Kim DY, Kwon DY, Kwon JS, Kim JH, Min BH, Kim MS. Stimuli-Responsive InjectableIn situ-Forming Hydrogels for Regenerative Medicines. POLYM REV 2015. [DOI: 10.1080/15583724.2014.983244] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Al Kayal T, Panetta D, Canciani B, Losi P, Tripodi M, Burchielli S, Ottoni P, Salvadori PA, Soldani G. Evaluation of the effect of a gamma irradiated DBM-pluronic F127 composite on bone regeneration in Wistar rat. PLoS One 2015; 10:e0125110. [PMID: 25897753 PMCID: PMC4405568 DOI: 10.1371/journal.pone.0125110] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/20/2015] [Indexed: 11/25/2022] Open
Abstract
Demineralized bone matrix (DBM) is widely used for bone regeneration. Since DBM is prepared in powder form its handling properties are not optimal and limit the clinical use of this material. Various synthetic and biological carriers have been used to enhance the DBM handling. In this study we evaluated the effect of gamma irradiation on the physical-chemical properties of Pluronic and on bone morphogenetic proteins (BMPs) amount in DBM samples. In vivo studies were carried out to investigate the effect on bone regeneration of a gamma irradiated DBM-Pluronic F127 (DBM-PF127) composite implanted in the femur of rats. Gamma irradiation effects (25 kGy) on physical-chemical properties of Pluronic F127 were investigated by rheological and infrared analysis. The BMP-2/BMP-7 amount after DBM irradiation was evaluated by ELISA. Bone regeneration capacity of DBM-PF127 containing 40% (w/w) of DBM was investigated in transcortical holes created in the femoral diaphysis of Wistar rat. Bone porosity, repaired bone volume and tissue organization were evaluated at 15, 30 and 90 days by Micro-CT and histological analysis. The results showed that gamma irradiation did not induce significant modification on physical-chemical properties of Pluronic, while a decrease in BMP-2/BMP-7 amount was evidenced in sterilized DBM. Micro-CT and histological evaluation at day 15 post-implantation revealed an interconnected trabeculae network in medullar cavity and cellular infiltration and vascularization of DBM-PF127 residue. In contrast a large rate of not connected trabeculae was observed in Pluronic filled and unfilled defects. At 30 and 90 days the DBM-PF127 samples shown comparable results in term of density and thickness of the new formed tissue respect to unfilled defect. In conclusion a gamma irradiated DBM-PF127 composite, although it may have undergone a significant decrease in the concentration of BMPs, was able to maintains bone regeneration capability.
Collapse
Affiliation(s)
- Tamer Al Kayal
- Institute of Clinical Physiology- CNR, Pisa, Italy
- * E-mail:
| | | | - Barbara Canciani
- University & IRCCS AOU San Martino—IST, National Institute for Cancer Research, DIMES, Genova, Italy
| | - Paola Losi
- Institute of Clinical Physiology- CNR, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Bhardwaj A, Kumar L, Mehta S, Mehta A. Stimuli-sensitive Systems-an emerging delivery system for drugs. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013. [DOI: 10.3109/21691401.2013.856016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Lihong W, Xin C, Yongxue G, Yiying B, Gang C. Thermoresponsive ophthalmic poloxamer/tween/carbopolin situgels of a poorly water-soluble drug fluconazole: preparation andin vitro–in vivoevaluation. Drug Dev Ind Pharm 2013; 40:1402-10. [DOI: 10.3109/03639045.2013.828221] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Nguyen DH, Bae JW, Choi JH, Lee JS, Park KD. Bioreducible cross-linked Pluronic micelles: pH-triggered release of doxorubicin and folate-mediated cellular uptake. J BIOACT COMPAT POL 2013. [DOI: 10.1177/0883911513491642] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bioreducible are described here, cross-linked Pluronic micelles carrying doxorubicin (DOX) for folate-mediated cancer targeting. The amine-terminated Pluronic® F-127 was functionalized by grafting acrylic acid (AA) to the hydrophobic block (AA-Pluronic-NH2). Folic acid (FA), hydrazine (H), and cystamine (C) were sequentially conjugated to AA-Pluronic-NH2, followed by DOX conjugation via an acid-labile hydrazone bond (FA-Pluronic-C/H-DOX). The DOX content was approximately 143 µg/mg of polymer. We prepared bioreducible cross-linked micelles using FA-Pluronic-C/H-DOX, which had a diameter of 156.1 nm. After incubation for 24 h with 10 mM of dithiothreitol, the micelle size decreased dramatically to 87.6 nm with a broad distribution, indicating that disulfide bonds in the micelle core were reductively cleaved. In vitro release data showed that the conjugated DOX was released slowly from the FA-Pluronic C/H-DOX micelles at pH 7.4, whereas there was a rapid DOX release at pH 5.2. Confocal images of HeLa cells showed enhanced cellular uptake of FA-Pluronic-C/H-DOX micelles as compared to nontargeted Pluronic-C/H-DOX micelles. The FA-Pluronic-C/H-DOX micelles killed more cells than the nontargeted micelles, but the cytotoxic effect was not as significant as free DOX. Additionally, micelles without DOX were not cytotoxic. On the basis of these results, pH- and redox potential–responsive FA-Pluronic-C/H-DOX micelles could potentially function as cancer-targeted and controlled DOX delivery systems.
Collapse
Affiliation(s)
- Dai Hai Nguyen
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Jin Woo Bae
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Jong Hoon Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Jung Seok Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
18
|
Agrawal AK, Das M, Jain S. In situ gel systems as 'smart' carriers for sustained ocular drug delivery. Expert Opin Drug Deliv 2013; 9:383-402. [PMID: 22432690 DOI: 10.1517/17425247.2012.665367] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION In situ gel systems refer to a class of novel delivery vehicles, composed of natural, semisynthetic or synthetic polymers, which present the unique property of sol-gel conversion on receipt of biological stimulus. AREAS COVERED The present review summarizes the latest developments in in situ gel technology, with regard to ophthalmic drug delivery. Starting with the mechanism of ocular absorption, the review expands on the fabrication of various polymeric in situ gel systems, made up of two or more polymers presenting multi-stimuli sensitivity, coupled with other interesting features, such as bio-adhesion, enhanced penetration or sustained release. Various key issues and challenges in this area have been addressed and critically analyzed. EXPERT OPINION The advent of in situ gel systems has inaugurated a new transom for 'smart' ocular delivery. By virtue of possessing stimuli-responsive phase transition properties, these systems can easily be administered into the eye, similar to normal eye drops. Their unique gelling properties endow them with special features, such as prolonged retention at the site of administration, followed by sustained drug release. Despite the superiority of these systems as compared with conventional ophthalmic formulations, further investigations are necessary to address the toxicity issues, so as to minimize regulatory hurdles during commercialization.
Collapse
Affiliation(s)
- Ashish Kumar Agrawal
- National Institute of Pharmaceutical Education and Research, Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, SAS Nagar, Punjab, 160 062, India
| | | | | |
Collapse
|
19
|
Pahuja P, Arora S, Pawar P. Ocular drug delivery system: a reference to natural polymers. Expert Opin Drug Deliv 2012; 9:837-61. [DOI: 10.1517/17425247.2012.690733] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Loira-Pastoriza C, Sapin-Minet A, Diab R, Grossiord J, Maincent P. Low molecular weight heparin gels, based on nanoparticles, for topical delivery. Int J Pharm 2012; 426:256-262. [DOI: 10.1016/j.ijpharm.2012.01.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/20/2012] [Accepted: 01/21/2012] [Indexed: 11/24/2022]
|
21
|
Abstract
BACKGROUND The TRI-726 polymeric drug delivery matrix is a newly-developed biocompatible hydrogel exhibiting in situ reverse-thermal gelling, mucoadhesivity, and sustained-erosion properties. METHODS Using two model drugs, clindamycin hydrochloride and acetaminophen, we determined the gelling temperatures, in vitro release profiles, kinetics of matrix erosion, rheological properties, mucoadhesive strength, microbiological activity of released clindamycin, and biocompatibility when in contact with cells. RESULTS It was demonstrated that none of the excipients contained in the TRI-726 polymer matrix caused any loss in clindamycin?s antimicrobial activity following incorporation into the polymer matrix. Thus, the new patent pending TRI-726 drug delivery matrix was both inert and non-reactive toward the incorporated clindamycin in terms of chemical degradation (< 10% degradation under accelerated conditions over 6 months) and antimicrobial activity. CONCLUSIONS This new drug delivery matrix is capable of releasing a wide variety of water-soluble drug compounds over an approximate 10-day period, due primarily to protracted dissolution/erosion of the three-dimensional polymer matrix in an aqueous-based biophase. Additionally, TRI-726 exhibits excellent mucoadhesive properties that would allow a candidate drug/TRI-726 formulation to adhere and remain at a potential application site for an extended period of time. Lastly, the biocompatibility tests affirmed the non-toxic and biocompatible nature of TRI-726 when in contact with cells, which suggests its suitability and versatility as a drug delivery matrix for the targeted administration of a wide range of pharmaceutical compounds where in situ gelation, protracted release of the active, and mucoadhesion of the formulation are desired.
Collapse
Affiliation(s)
- Pravakar Mondal
- Division of Pharmaceutical Science, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri 64108-2718, USA
| | | | | |
Collapse
|
22
|
Cao F, Zhang X, Ping Q. New method for ophthalmic delivery of azithromycin by poloxamer/carbopol-based in situ gelling system. Drug Deliv 2010; 17:500-7. [PMID: 20500130 DOI: 10.3109/10717544.2010.483255] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study focused on preparation and evaluation of a thermosensitive and mucoadhesive in situ gelling ophthalmic system of azithromycin (ATM). Poloxamer 407 (P407) and poloxamer 188 (P188) were used as gelling agents. Addition of Carbopol 974P (CP 974P) to the gelling systems could increase the solubility of ATM by salt effect and enhance the mucoadhesive property of the systems. Gelation temperature of these systems ranged from 31.21-36.31 degrees C depending on the ratio of P407 and P188. Mucoadhesion force of the system composed of P407/P188/CP 974P (21/5/0.3%, w/v) was 2.3-fold that without carbopol 974P. Viscosity of the formulation was in a suitable range at 25 degrees C and pseudoplastic behavior was observed at 35 degrees C. The formulation exhibited a 24-h sustained release of ATM. In vivo resident experiments showed AUC(0-12) of ATM in rabbit tears increased by 1.78-fold for in situ gel compared with eye drop. At 12 h, tear concentrations exceeded minimum inhibitory concentration (MIC) breakpoint for the most common causative pathogens of bacterial conjunctivitis by 2.8-fold. Results in vitro and in vivo indicated that this droppable gel performed better than ATM eye drop did.
Collapse
Affiliation(s)
- Feng Cao
- College of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | | | | |
Collapse
|