1
|
Dixit T, Vaidya A, Ravindran S. Polymeric nanoparticles-based targeted delivery of drugs and bioactive compounds for arthritis management. Future Sci OA 2025; 11:2467591. [PMID: 39973324 PMCID: PMC11845113 DOI: 10.1080/20565623.2025.2467591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
This review explores the potential of polymeric nanoparticles (PNPs) as targeted drug delivery systems for arthritic treatment, overcoming the limitations of the present therapy. A thorough literature search was conducted on the databases PubMed, Scopus, and Web of Science to find published articles on the use of polymeric nanoparticles in the treatment of arthritis. This includes synthesis methods, mechanisms in drug delivery, and applications of PNPs. Polymeric nanoparticles showed excellent promise in the management of arthritis through enhanced stability of drugs, controlled and sustained drug release, and reduced systemic side effects. Some of the highlighted biocompatible and targeting capabilities of natural and synthetic polymers include chitosan, hyaluronic acid, and PLGA. Bioactive compounds such as curcumin and resveratrol delivered by PNPs enhanced therapeutic efficacy in preclinical arthritis models. Despite their promise, challenges such as rapid clearance and manufacturing scalability remain critical barriers. Polymeric nanoparticles offer a transformative approach to arthritis management by enabling targeted, sustained, and safe drug delivery. Translation into clinical applications would thus require developments in nanoparticle design, personalized medicine, and scalable production techniques.
Collapse
Affiliation(s)
- Tanu Dixit
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Anuradha Vaidya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Selvan Ravindran
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
2
|
Zarneshan SN, Arkan E, Kiani A, Hosseini SZ, Abbaszadeh F, Fakhri S. Protective effects of polydatin amphiphilic chitosan nanocarriers against an aluminum chloride-induced model of Alzheimer's disease in rats: relevance to its anti-inflammatory and antioxidant effects. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03696-2. [PMID: 39786589 DOI: 10.1007/s00210-024-03696-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 11/29/2024] [Indexed: 01/12/2025]
Abstract
Alzheimer's disease (AD) is the most frequent cause of dementia. Since there are complex pathophysiological mechanisms behind AD, and there is no effective treatment strategy, it is necessary to introduce novel multi-targeting agents with fewer side effects and higher efficacy. Polydatin (PD) is a naturally occurring resveratrol glucoside employing multiple mechanisms toward neuroprotection. In the current study, the anti-AD mechanisms of a novel amphiphilic chitosan nanocarrier formulation (ACN) of PD (NPD) were studied. After preparing the amphiphilic chitosan nanoformulation (i.e., NPD), physicochemical properties were assessed, including particle size, zeta potential, drug loading, drug release, MTT, Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). For in vivo analysis, aluminum chloride (AlCl3) was injected intraperitoneally for 14 days to induce AD in male Albino Wistar rats. To examine the anti-AD mechanisms of NPD, a total of 36 rats were divided into six groups of six. Behavioral tests, including open field, Y-maze, elevated plus maze, and shuttle box were done on days 7, 8, 14, and 15. Additionally, zymography, biochemical analysis, and histological studies were done. NPD, as a newly synthesized formulation for PD, potentially improved memory and cognitive behavioral parameters and reduced the activity of inflammatory matrix metalloproteinase 9 (MMP9) and serum nitrite levels, while increasing anti-inflammatory MMP2, antioxidant catalase, and glutathione. NPD also prevented morphological changes and increased neuronal survival in the CA2, CA4, and DG regions of the rat hippocampus. In conclusion, NPD is a novel formulation against AD through anti-inflammatory, antioxidant, and neuroprotective mechanisms.
Collapse
Affiliation(s)
| | - Elham Arkan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyede Zahra Hosseini
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Ahmed NM, Ibrahim MM, Elmehasseb IM, Shaban SY. Picoplatin (II)-loaded chitosan nanocomposites as effective drug delivery systems: Preparation, mechanistic investigation of BSA/5-GMP/GSH binding and biological evaluations. Carbohydr Res 2024; 545:109292. [PMID: 39427432 DOI: 10.1016/j.carres.2024.109292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
The goal of the current study is to improve the characteristics and bioavailability of the drug picoplatin (PPt) by encapsulating it in chitosan nanoparticles (CS NPs) which allows for the targeted delivery of cytotoxic cargo to cancerous tissue, reducing toxic side effects and raising the therapeutic index. When picoplatin was delivered into the CS, it was able to produce a complex with CS (PPt@CS NPs) that had an appropriate particle size of 275 ± 10 nm, a reasonably low PDI of 0.15 ± 0.05, and high stability (ζ = -22.1 ± 0.3 mV). Since almost all pharmaceuticals work by binding to specific proteins or DNA, the in vitro binding mechanism and affinity of bovine serum albumin (BSA), low molecular building units of nucleic acids (5-GMP), and Glutathione (GSH) (considering that cisplatin resistance could be due to a reaction between cisplatin and GSH) to PPt and PPt@CS NPs were examined using stopped-flow and other spectroscopic approaches. Through two reversible processes, a rapid second-order binding followed by a slower first-order isomerization reaction, and a static quenching mechanism, PPt and PPt@CS NPs bind to BSA with relative reactivity of around (PPt)/(PPt@CS NPs) = 1/2.5. The 5-GMP interaction studies demonstrated that, in addition to changing the binding mechanism, PPt's encapsulation in CS increases its rate of reaction through coordination affinity. PPt interacted with 5-GMP via two reversible processes, a rapid second-order binding to phosphate followed by a slower first-order migration to the N7 of pyrimidine moiety. PPt@CS NPs showed weaker binding to GSH compared to PPt and hence PPt@CS NPs exhibits a lower resistance factor. It was also found that the in vitro drug release of PPt@CS NPs in PBS at pH 7.4 was steady, releasing 30 % of the PPt in just 5 h. Nonetheless, 75 % of the release in a pH 5.4 solution containing 10 mM GSH-a solution that mimics the tumor microenvironment-shows that the PPt@CS NPs system is sensitive to GSH and specifically targets malignant tissue. The encapsulation of PPt in CS complex maintained its anticancer activity, as shown by an in vitro cell-survival assay on HepG2 cancer cell lines and also cleavage efficiency toward the minor groove of pBR322 DNA via the hydrolytic way. These findings collectively suggested that inclusion PPt in CS would be an effective strategy to formulate a novel picoplatin formulation intended for use as targeted anticancer treatment.
Collapse
Affiliation(s)
- Noha M Ahmed
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mohamed M Ibrahim
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ibrahim M Elmehasseb
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Shaban Y Shaban
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| |
Collapse
|
4
|
Lakkakula J, Srilekha GKP, Kalra P, Varshini SA, Penna S. Exploring the promising role of chitosan delivery systems in breast cancer treatment: A comprehensive review. Carbohydr Res 2024; 545:109271. [PMID: 39270442 DOI: 10.1016/j.carres.2024.109271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
Breast cancer presents a significant global health challenge, driving the development of novel treatment strategies for therapeutic interventions. Nanotechnology has emerged as a promising avenue for addressing this challenge, with Chitosan (CS) nanoparticles receiving prominence due to their unique characteristics and multitude of potential applications. This review provides a comprehensive overview of the role of Chitosan nanoparticles in breast cancer therapy. The review begins by emphasizing the prevalence and importance of breast cancer as a major health issue, underscoring the necessity for effective treatments. It then delves into the application of Chitosan nanoparticles in breast cancer therapy. One key aspect discussed is their role as carriers for anticancer drugs, enabling targeted delivery and improved cellular uptake. Furthermore, the review explores modified Chitosan nanoparticles and strategies for enhancing their efficacy and specificity in breast cancer treatment. It also examines Chitosan conjugates and hybrids, which offer innovative approaches for combination therapy. Additionally, metal and magnetic Chitosan nanoparticles are discussed spanning their capacity to assist in imaging, hyperthermia, as well as targeted drug delivery. In conclusion, the review summarizes the current research landscape regarding Chitosan nanoparticles for breast cancer therapy and offers insights into future directions. Overall, the review highlights the versatility, potential benefits, and future prospects of Chitosan nanoparticles in combating breast cancer.
Collapse
Affiliation(s)
- Jaya Lakkakula
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206; Centre for Computational Biology and Translational Research, Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206
| | - G K P Srilekha
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206
| | - Palak Kalra
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206
| | - S A Varshini
- Ramaiah University of Applied Sciences, Bangalore, India
| | - Suprasanna Penna
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206.
| |
Collapse
|
5
|
Kadhim IH, Oluremi AS, Chhetri BP, Ghosh A, Ali N. Encapsulation of Inositol Hexakisphosphate with Chitosan via Gelation to Facilitate Cellular Delivery and Programmed Cell Death in Human Breast Cancer Cells. Bioengineering (Basel) 2024; 11:931. [PMID: 39329673 PMCID: PMC11429465 DOI: 10.3390/bioengineering11090931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Inositol hexakisphosphate (InsP6) is the most abundant inositol polyphosphate both in plant and animal cells. Exogenous InsP6 is known to inhibit cell proliferation and induce apoptosis in cancerous cells. However, cellular entry of exogenous InsP6 is hindered due to the presence of highly negative charge on this molecule. Therefore, to enhance the cellular delivery of InsP6 in cancerous cells, InsP6 was encapsulated by chitosan (CS), a natural polysaccharide, via the ionic gelation method. Our hypothesis is that encapsulated InsP6 will enter the cell more efficiently to trigger its apoptotic effects. The incorporation of InsP6 into CS was optimized by varying the ratios of the two and confirmed by InsP6 analysis via polyacrylamide gel electrophoresis (PAGE) and atomic absorption spectrophotometry (AAS). The complex was further characterized by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) for physicochemical changes. The data indicated morphological changes and changes in the spectral properties of the complex upon encapsulation. The encapsulated InsP6 enters human breast cancer MCF-7 cells more efficiently than free InsP6 and triggers apoptosis via a mechanism involving the production of reactive oxygen species (ROS). This work has potential for developing cancer therapeutic applications utilizing natural compounds that are likely to overcome the severe toxic effects associated with synthetic chemotherapeutic drugs.
Collapse
Affiliation(s)
- Ilham H Kadhim
- Department of Biology, Donaghey College of Science, Engineering, Technology, and Mathematics, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| | - Adeolu S Oluremi
- Department of Biology, Donaghey College of Science, Engineering, Technology, and Mathematics, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| | - Bijay P Chhetri
- Department of Chemistry, Donaghey College of Science, Engineering, Technology, and Mathematics, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| | - Anindya Ghosh
- Department of Chemistry, Donaghey College of Science, Engineering, Technology, and Mathematics, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| | - Nawab Ali
- Department of Biology, Donaghey College of Science, Engineering, Technology, and Mathematics, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| |
Collapse
|
6
|
Ahmad K, Zhang Y, Chen P, Yang X, Hou H. Chitosan interaction with stomach mucin layer to enhances gastric retention and mucoadhesive properties. Carbohydr Polym 2024; 333:121926. [PMID: 38494203 DOI: 10.1016/j.carbpol.2024.121926] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
The interaction between mucoadhesive materials and mucin layers is of significant interest in the development of drug delivery systems and biomedical applications for effective targeting and prolonged stay in the gastrointestinal tract. In this article, the current advancement and mucoadhesive properties of chitosan concerning the stomach mucin layer and its interactions have been briefly addressed. Chitosan a biocompatible polysaccharide exhibited promising mucoadhesive properties attributed to its cationic nature and ability to establish bonds with mucin glycoproteins. The mucoadhesion mechanism is ascribed to the electrostatic interactions between the positively charged amino (NH2) groups of chitosan and the sialic acid residues in mucin glycoprotein which carry a negative charge. The article provides a succinct overview of prior uses, current trends, and recent advancements in chitosan-based gastric-targeted delivery systems. We look forward to further innovations and emerging research related to chitosan-based methods of delivery that may increase the chitosan suitability for use in novel therapeutic approaches.
Collapse
Affiliation(s)
- Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Yanying Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Peng Chen
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Xia Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong Province 266237, PR China; Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province 572024, PR China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, Shandong Province 266000, PR China.
| |
Collapse
|
7
|
Wang Y, Rencus-Lazar S, Zhou H, Yin Y, Jiang X, Cai K, Gazit E, Ji W. Bioinspired Amino Acid Based Materials in Bionanotechnology: From Minimalistic Building Blocks and Assembly Mechanism to Applications. ACS NANO 2024; 18:1257-1288. [PMID: 38157317 DOI: 10.1021/acsnano.3c08183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Inspired by natural hierarchical self-assembly of proteins and peptides, amino acids, as the basic building units, have been shown to self-assemble to form highly ordered structures through supramolecular interactions. The fabrication of functional biomaterials comprised of extremely simple biomolecules has gained increasing interest due to the advantages of biocompatibility, easy functionalization, and structural modularity. In particular, amino acid based assemblies have shown attractive physical characteristics for various bionanotechnology applications. Herein, we propose a review paper to summarize the design strategies as well as research advances of amino acid based supramolecular assemblies as smart functional materials. We first briefly introduce bioinspired reductionist design strategies and assembly mechanism for amino acid based molecular assembly materials through noncovalent interactions in condensed states, including self-assembly, metal ion mediated coordination assembly, and coassembly. In the following part, we provide an overview of the properties and functions of amino acid based materials toward applications in nanotechnology and biomedicine. Finally, we give an overview of the remaining challenges and future perspectives on the fabrication of amino acid based supramolecular biomaterials with desired properties. We believe that this review will promote the prosperous development of innovative bioinspired functional materials formed by minimalistic building blocks.
Collapse
Affiliation(s)
- Yuehui Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Sigal Rencus-Lazar
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Haoran Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, People's Republic of China
| | - Xuemei Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ehud Gazit
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
8
|
Han Q, Zhang J, Yang L, Guan X, Zhao Z, Wang X. Self-assembled nano-particles of chitosan amphiphilic derivative for formaldehyde fluorescent detection and its application in test strips. CHEMOSPHERE 2023; 339:139606. [PMID: 37499800 DOI: 10.1016/j.chemosphere.2023.139606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Excessive levels of formaldehyde (FA) represent serious health risks. Aiming at the detection of formaldehyde content, this paper proposes a self-assembly method of proportional nanoprobes. Spherical nanoparticles (NPs) were prepared by one-step condensation reaction between rhodamine B (RhB) and chitosan (CS). After CS was modified by RhB, the linear structure changed and self-assembled under the action of "hydrophilic/hydrophobic" to form a core-shell structure with a cavity structure. The hydrophobic small molecule probe N-Butyl-4-Hydrazo-1,8-Naphacticimide (NBHN) spontaneously entered into the hydrophobic cavity to form spherical particles Chitosan-Rhodamine B@N-Butyl-4-Hydrazo-1,8-Naphacticimide (CS-RhB@NBHN) with a size of about 60 nm. The hydroxyl groups on CS enrich formaldehyde through charge interaction, and promote the reaction of formaldehyde with NBHN, so that the probe can detect formaldehyde at a lower concentration (detection limit 87 nmol·L-1). The self-assembled CS-RhB@NBHN nanoparticles significantly increased the response speed of NBHN (from 30 min to 10 min). After the reaction of NBHN with formaldehyde, the PET effect is released, the fluorescence transition from red to yellow of CS-RhB@NBHN, and the visual fluorescence response effect to formaldehyde is significantly improved. With the help of smartphone color recognition software, we converted the color of the probe solution into RGB values to realize the quantitative and visual detection of formaldehyde. In addition, CS-RhB@NBHN was used for the detection of FA in leather and air.
Collapse
Affiliation(s)
- Qingxin Han
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science&Technology, Xi'an, 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science&Technology, Xi'an, 710021, China.
| | - Junli Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science&Technology, Xi'an, 710021, China
| | - Lingna Yang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science&Technology, Xi'an, 710021, China
| | - Xiaoyu Guan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science&Technology, Xi'an, 710021, China.
| | - Zhi Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science&Technology, Xi'an, 710021, China
| | - Xuechuan Wang
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an, 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science&Technology, Xi'an, 710021, China.
| |
Collapse
|
9
|
Luo W, Bai L, Zhang J, Li Z, Liu Y, Tang X, Xia P, Xu M, Shi A, Liu X, Zhang D, Yu P. Polysaccharides-based nanocarriers enhance the anti-inflammatory effect of curcumin. Carbohydr Polym 2023; 311:120718. [PMID: 37028867 DOI: 10.1016/j.carbpol.2023.120718] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/27/2023]
Abstract
Curcumin (CUR) has been discovered to have many biological activities, including anti-inflammatory, anti-cancer, anti-oxygenation, anti-human immunodeficiency virus, anti-microbial and exhibits a good effect on the prevention and treatment of many diseases. However, the limited properties of CUR, including the poor solubility, bioavailability and instability caused by enzymes, light, metal irons, and oxygen, have compelled researchers to turn their attention to drug carrier application to overcome these drawbacks. Encapsulation may provide potential protective effects to the embedding materials and/or have a synergistic effect with them. Therefore, nanocarriers, especially polysaccharides-based nanocarriers, have been developed in many studies to enhance the anti-inflammatory capacity of CUR. Consequently, it's critical to review current advancements in the encapsulation of CUR using polysaccharides-based nanocarriers, as well as further study the potential mechanisms of action where polysaccharides-based CUR nanoparticles (the complex nanoparticles/Nano CUR-delivery systems) exhibit their anti-inflammatory effects. This work suggests that polysaccharides-based nanocarriers will be a thriving field in the treatment of inflammation and inflammation-related diseases.
Collapse
Affiliation(s)
- Wei Luo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Liangyu Bai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaoyi Tang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China
| | - Ao Shi
- School of Medicine, St.George University of London, London, UK
| | - Xiao Liu
- Cardiology Department, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China.
| |
Collapse
|
10
|
Rostami E. Recent achievements in sodium alginate-based nanoparticles for targeted drug delivery. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Puluhulawa LE, Joni IM, Elamin KM, Mohammed AFA, Muchtaridi M, Wathoni N. Chitosan-Hyaluronic Acid Nanoparticles for Active Targeting in Cancer Therapy. Polymers (Basel) 2022; 14:polym14163410. [PMID: 36015667 PMCID: PMC9416118 DOI: 10.3390/polym14163410] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is the most common cause of death worldwide; therefore, there is a need to discover novel treatment modalities to combat it. One of the cancer treatments is nanoparticle technology. Currently, nanoparticles have been modified to have desirable pharmacological effects by using chemical ligands that bind with their specific receptors on the surface of malignant cells. Chemical grafting of chitosan nanoparticles with hyaluronic acid as a targeted ligand can become an attractive alternative for active targeting. Hence, these nanoparticles can control drug release with pH- responsive stimuli, and high selectivity of hyaluronic acid to CD44 receptors makes these nanoparticles accumulate more inside cells that overexpress these receptors (cancer cells). In this context, we discuss the benefits and recent findings of developing and utilizing chitosan–hyaluronic acid nanoparticles against distinct forms of cancer malignancy. From here we know that chitosan–hyaluronic acid nanoparticles (CHA-Np) can produce a nanoparticle system with good characteristics, effectiveness, and a good active targeting on various types of cancer cells. Therefore, this system is a good candidate for targeted drug delivery for cancer therapy, anticipating that CHA-Np could be further developed for various cancer therapy applications.
Collapse
Affiliation(s)
- Lisa Efriani Puluhulawa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - I Made Joni
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Khaled M. Elamin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | - Muchtaridi Muchtaridi
- Departement of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: ; Tel.: +62-22-824-888888
| |
Collapse
|
12
|
Ejaz S, Ejaz S, Shahid R, Noor T, Shabbir S, Imran M. Chitosan-curcumin complexation to develop functionalized nanosystems with enhanced antimicrobial activity against hetero-resistant gastric pathogen. Int J Biol Macromol 2022; 204:540-554. [PMID: 35157901 DOI: 10.1016/j.ijbiomac.2022.02.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
Abstract
With the apparent stagnation in the antibiotic discovery and the propagation of multidrug resistance, Helicobacter pylori associated gastric infections are hard to eradicate. In pursuance of alternative medicines, in this study, covalent modification of chitosan (CS) polymer with curcumin (Cur) was accomplished. Proton Nuclear Magnetic Resonance and Fourier Transform Infrared spectroscopy elucidated the covalent interaction between Cur and CS with characteristic peak of imine functional group (C=N). Scanning Electron Microscopy provided visual proof for surface topology, while size and zeta potential values further affirmed the development of curcumin functionalized chitosan nanosystems (Cur-FCNS). The complexation efficiency of CS with Cur was found as 70 ± 3% at an optimal ratio of 5:1 for CS and Cur, respectively. Cur-FCNS developed with ionic gelation and ultrasonication method demonstrated synergistic anti-H. pylori activity in growth-kinetics and anti-biofilm assays, which was superior to free Cur and even chitosan nanosystems. Under simulated gastric conditions, Cur-FCNS revealed cumulative-release of only 16 ± 0.8% till 40 h, which indicated its improved stability to interact with H. pylori. In silico findings affirmed high binding affinity of Cur-FCNS with multiple bacterial virulence factors. Thus, our results affirmed the exceptional potential of Cur-FCNS as next-generation alternative-medicine to treat resistant H. pylori.
Collapse
Affiliation(s)
- Sadaf Ejaz
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Saima Ejaz
- Research Centre for Modelling and Simulation (RCMS), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Ramla Shahid
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Saima Shabbir
- Department of Materials Science and Engineering, Institute of Space Technology (IST), Islamabad 44000, Pakistan
| | - Muhammad Imran
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan.
| |
Collapse
|
13
|
Wang T, Ménard-Moyon C, Bianco A. Self-assembly of amphiphilic amino acid derivatives for biomedical applications. Chem Soc Rev 2022; 51:3535-3560. [PMID: 35412536 DOI: 10.1039/d1cs01064f] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Amino acids are one of the simplest biomolecules and they play an essential role in many biological processes. They have been extensively used as building blocks for the synthesis of functional nanomaterials, thanks to their self-assembly capacity. In particular, amphiphilic amino acid derivatives can be designed to enrich the diversity of amino acid-based building blocks, endowing them with specific properties and/or promoting self-assembly through hydrophobic interactions, hydrogen bonding, and/or π-stacking. In this review, we focus on the design of various amphiphilic amino acid derivatives able to self-assemble into different types of nanostructures that were exploited for biomedical applications, thanks to their excellent biocompatibility and biodegradability.
Collapse
Affiliation(s)
- Tengfei Wang
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France.
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France.
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France.
| |
Collapse
|
14
|
Fan Y, Liu Y, Wu Y, Dai F, Yuan M, Wang F, Bai Y, Deng H. Natural polysaccharides based self-assembled nanoparticles for biomedical applications - A review. Int J Biol Macromol 2021; 192:1240-1255. [PMID: 34678381 DOI: 10.1016/j.ijbiomac.2021.10.074] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022]
Abstract
In recent years, nanoparticles (NPs) derived from the self-assembly of natural polysaccharides have shown great potential in the biomedical field. Here, we described several self-assembly modes of natural polysaccharides in detail, summarized the natural polysaccharides mostly used for self-assembly, and provided insights into the current applications and achievements of these self-assembled NPs. As one of the most widespread substances in nature, most natural polysaccharides exhibit advantages of biodegradability, low immunogenicity, low toxicity, and degradable properties. Therefore, they have been fully explored, and the application of chitosan, hyaluronic acid, alginate, starch, and their derivatives has been extensively studied, especially in the fields of biomedical. Polysaccharides based NPs were proved to improve the solubility of insoluble drugs, enhance tissue target ability and realize the controlled and sustained release of drugs. When modified by hydrophobic groups, the amphiphilic polysaccharides can self-assemble into NPs. Other driven forces of self-assembly include electrostatic interaction and hydrogen bonds. Up to the present, polysaccharides-based nanoparticles have been widely applied for tumor treatment, antibacterial application, gene therapy, photodynamic therapy and transporting insulin.
Collapse
Affiliation(s)
- Yaqi Fan
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Yang Wu
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Mengqin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Feiyan Wang
- Shanghai Skin Disease Clinical College of Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, China
| | - Yun Bai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| | - Hongbing Deng
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
15
|
Liu Q, Li B, Li Y, Yang X, Qiao C, Hu W, Liu M. Solution properties of N-(2-allyl-butyl ether)-O-carboxymethyl chitosan and N-(2-allyl-isooctyl ether)-O-carboxymethyl chitosan. Int J Biol Macromol 2021; 190:93-100. [PMID: 34481851 DOI: 10.1016/j.ijbiomac.2021.08.208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/05/2021] [Accepted: 08/28/2021] [Indexed: 02/04/2023]
Abstract
pH-sensitive and amphiphilic chitosan derivatives can be used as hydrophobic drug carriers, and their rheological properties play a key role in their performance. In this paper, two pH-responsive and amphiphilic chitosan derivatives, N-(2-allyl-butyl glycidyl ether)-O-carboxymethyl chitosan (HBCC) and N-(2-ethylhexyl glycidyl ether)-O-carboxymethyl chitosan (H2ECC) were synthesized, and their rheological properties were studied. The influence of parameters including concentrations of HBCC and H2ECC, the degree of substitution, solution pH, and [Ca2+] on the rheological properties were investigated. The results showed that the overlap and entanglement concentration of HBCC and H2ECC was ca. 1.7 wt% and 5 wt%, respectively. The dilute and semidilute solutions showed Newtonian behavior. Above 5 wt%, strong networks formed, and shear-thinning behavior appeared at high shear rates (>10 s-1) for entangled solutions. A high degree of substitution and pH near the isoelectric points of HBCC and H2ECC corresponded to a low viscosity and viscoelasticity. In addition, Ca2+ played a shielding effect on the -COO- groups at low concentrations (<10 mmol/L), whereas it acted as a cross-linker when [Ca2+] ≥ 20 mmol/L. The intermolecular hydrogen bonds were examined by molecular dynamics simulations. The results provide new information related to the application of HBCC and H2ECC for hydrophobic drug packaging and transportation.
Collapse
Affiliation(s)
- Qun Liu
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bo Li
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yan Li
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiaodeng Yang
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Congde Qiao
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Wei Hu
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Mingxia Liu
- Department of Blood Transfusion, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China.
| |
Collapse
|
16
|
Mendez-Pfeiffer P, Juarez J, Hernandez J, Taboada P, Virués C, Valencia D, Velazquez C. Nanocarriers as drug delivery systems for propolis: A therapeutic approach. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Motiei M, Aboutalebi F, Forouzanfar M, Dormiani K, Nasr-Esfahani MH, Mirahmadi-Zare SZ. Smart co-delivery of miR-34a and cytotoxic peptides (LTX-315 and melittin) by chitosan based polyelectrolyte nanocarriers for specific cancer cell death induction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112258. [PMID: 34474818 DOI: 10.1016/j.msec.2021.112258] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 12/01/2022]
Abstract
A novel polyelectrolyte nanocarrier was synthesized via layer-by-layer self-assembly of polycationic and polyanionic chains. The nanocarrier is composed of polyglutamate grafted chitosan core, dextran sulfate as a complexing agent, and polyethyleneimine shell decorated with folic acid. This polyelectrolyte complex has unique physicochemical properties so that the core is considered as an efficient carrier for LTX-315 and melittin peptides, and the shell is suitable for delivery of miR-34a. The spherical nanocarriers with an average size of 123 ± 5 nm and a zeta potential of -36 ± 1 mV demonstrated controlled-release of gene and peptides ensured a synergistic effect in establishing multiple cell death pathways on chemoresistance human breast adenocarcinoma cell line, MDA-MB-231. In vitro cell viability assays also revealed no cytotoxicity for the nanocarriers, and an IC50 of 15 μg/mL and 150 μg/mL for melittin and LTX-315, respectively, after 48 h, whereas co-delivery of melittin with miR-34a increased smart death induction by 54%.
Collapse
Affiliation(s)
- Marjan Motiei
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran; Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 76001 Zlín, Czech Republic
| | - Fatemeh Aboutalebi
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran
| | - Mahboobeh Forouzanfar
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran
| | - Kianoush Dormiani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran.
| | - Seyede Zohreh Mirahmadi-Zare
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran.
| |
Collapse
|
18
|
Sun J, Tian Q, Liu M, Su Y, Liu X, Deng Y, Song Y. Evaluation of the Antitumor Effect and Immune Response of Micelles Modified with a Polysialic Acid-D-α-Tocopheryl Polyethylene Glycol 1000 Succinate Conjugate. AAPS PharmSciTech 2021; 22:223. [PMID: 34409520 DOI: 10.1208/s12249-021-02047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/11/2021] [Indexed: 11/30/2022] Open
Abstract
D-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) has shown potential applications in cancer therapy owing to its attractive properties, including reversal of multi-drug resistance and synergistic effects with antitumor drugs. However, its associated shortcomings cannot be underestimated, including activation of the body's immune response and acceleration of blood clearance of polyethylene glycolylated preparations. Polysialic acid (PSA) is a polysaccharide homopolymer, with the dual function of immune camouflage and tumor targeting. PSA and TPGS conjugates (PSA-TPGS) were synthesized to weaken the immune risks of TPGS. We developed PSA-TPGS and TPGS self-assembled mixed micelles and encapsulated the classical antineoplastic, docetaxel. The particle size of docetaxel-loaded mixed micelles was 16.3 ± 2.0 nm, with entrapment efficiency of 99.0 ± 0.9% and drug-loading efficiency of 3.20 ± 0.03%. Antitumor activity studies revealed that the mixed micelles showed better tumor inhibition than Tween 80 and TPGS micelles. Detection of the accelerated blood clearance (ABC) phenomenon demonstrated that insertion of PSA-TPGS into the micelles weakened the ABC phenomenon induced by TPGS. In summary, PSA-TPGS could be a potential nanocarrier to improve antitumor activity and weaken immune responses.
Collapse
|
19
|
Self-assembled micelles based on amphiphilic biopolymers for delivery of functional ingredients. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Tian B, Liu Y, Liu J. Chitosan-based nanoscale and non-nanoscale delivery systems for anticancer drugs: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Rezaei S, Kashanian S, Bahrami Y, Zhaleh H, Cruz LJ. Enhanced Intracellular Delivery of Curcumin by Chitosan-Lipoic Acid as Reduction-Responsive Nanoparticles. Curr Pharm Biotechnol 2021; 22:622-635. [PMID: 32720599 DOI: 10.2174/1389201021999200727153513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 11/22/2022]
Abstract
AIMS Enhancement of anti-tumor activity of the chemotherapeutic agent CUR by redoxsensitive nanoparticle to get a deeper insight into cancer therapy. BACKGROUND Tumor targetability and stimulus are widely used to study the delivery of drugs for cancer diagnosis and treatment because poor cellular uptake and inadequate intracellular drug release lead to inefficient delivery of anticancer agents to tumor tissue. OBJECTIVE Studies distinguishing between tumor and normal tissues or redox-sensitive systems using glutathione (GSH) as a significant signal. METHODS In this study, we designed Chitosan-Lipoic acid Nanoparticles (CS-LANPs) to improve drug delivery for breast cancer treatment by efficient delivery of Curcumin (CUR). The properties of blank CS-LANPs were studied in detail. The size and the Polydispersity Index (PDI) of the CS-LANPs were optimized. RESULTS The results indicate the mean size and PDI of the blank CS-LANPs were around 249 nm and 0.125, respectively. However, the Drug Loading (DL) and Encapsulation Efficiency (EE) of the CSLANPs were estimated to be about 18.22% and 99.80%, respectively. Compared to non-reductive conditions, the size of reduction-sensitive CS-LANPs increased significantly under reductive conditions. Therefore, the drug release of CS-LANPs in the presence of glutathione was much faster than that of non-GSH conditions .Moreover, the antitumor effect of CS-LANPs on MCF-7 cells was determined in vitro by MTT assay, cell cytotoxicity, Caspase-3 Assay, detection of mitochondrial membrane potential and quantification of apoptosis incidence. CONCLUSION CS-LANPs showed a remarkably increased accumulation in tumor cells and had a better tumor inhibitory activity in vitro. CS-LANPs could successfully deliver drugs to cancer cells and revealed better efficiency than free CUR.
Collapse
Affiliation(s)
- Somayeh Rezaei
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Soheila Kashanian
- Department of Medical Biotechnology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Yadollah Bahrami
- Department of Medical Biotechnology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Hossein Zhaleh
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Centre (LUMC), Leiden, Netherlands
| |
Collapse
|
22
|
Motiei M, Pleno de Gouveia L, Šopík T, Vícha R, Škoda D, Císař J, Khalili R, Domincová Bergerová E, Münster L, Fei H, Sedlařík V, Sáha P. Nanoparticle-Based Rifampicin Delivery System Development. Molecules 2021; 26:molecules26072067. [PMID: 33916814 PMCID: PMC8038351 DOI: 10.3390/molecules26072067] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/28/2022] Open
Abstract
The alkaline milieu of chronic wounds severely impairs the therapeutic effect of antibiotics, such as rifampicin; as such, the development of new drugs, or the smart delivery of existing drugs, is required. Herein, two innovative polyelectrolyte nanoparticles (PENs), composed of an amphiphilic chitosan core and a polycationic shell, were synthesized at alkaline pH, and in vitro performances were assessed by 1H NMR, elemental analysis, FT-IR, XRD, DSC, DLS, SEM, TEM, UV/Vis spectrophotometry, and HPLC. According to the results, the nanostructures exhibited different morphologies but similar physicochemical properties and release profiles. It was also hypothesized that the simultaneous use of the nanosystem and an antioxidant could be therapeutically beneficial. Therefore, the simultaneous effects of ascorbic acid and PENs were evaluated on the release profile and degradation of rifampicin, in which the results confirmed their synergistic protective effect at pH 8.5, as opposed to pH 7.4. Overall, this study highlighted the benefits of nanoparticulate development in the presence of antioxidants, at alkaline pH, as an efficient approach for decreasing rifampicin degradation.
Collapse
Affiliation(s)
- Marjan Motiei
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
- Correspondence:
| | - Luis Pleno de Gouveia
- iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 169-003 Lisbon, Portugal;
| | - Tomáš Šopík
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
| | - Robert Vícha
- Department of Chemistry, Faculty of Technology, TBU, Vavrečkova 275, 76001 Zlín, Czech Republic;
| | - David Škoda
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
| | - Jaroslav Císař
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
| | - Reza Khalili
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 12808 Prague 2, Czech Republic;
| | - Eva Domincová Bergerová
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
| | - Lukáš Münster
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
| | - Haojie Fei
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
| | - Vladimír Sedlařík
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
| | - Petr Sáha
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
| |
Collapse
|
23
|
Jaiswal S, Dutta P, Kumar S, Chawla R. Chitosan modified by organo-functionalities as an efficient nanoplatform for anti-cancer drug delivery process. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
|
25
|
Ridha AA, Kashanian S, Azandaryani AH, Rafipour R, Mahdavian E. New Folate-Modified Human Serum Albumin Conjugated to Cationic Lipid Carriers for Dual Targeting of Mitoxantrone against Breast Cancer. Curr Pharm Biotechnol 2020; 21:305-315. [DOI: 10.2174/1389201020666191114113022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/20/2019] [Accepted: 10/24/2019] [Indexed: 02/08/2023]
Abstract
Aim:In the present work, folic acid-modified human serum albumin conjugated to cationic solid lipid nanoparticles were synthesized as nanocarriers of mitoxantrone for the treatment of breast cancer.Background:Dual-targeted drug delivery is a new drug dosing strategy that is frequently used to enhance the therapeutic efficacy of anticancer drugs.Objective:Dual targeting of the cancer cells was achieved by dual tagging of human serum albumin and folic acid on the surface of the lipid nanoparticles.Methods:The targeted drug-loaded nanocomplexes were synthesized and characterized using transmission electron microscopy along with photon-correlation and Fourier-transform infrared spectroscopic techniques. The anti-cancer activity of the nanocomplexes was screened against an in-vitro model of MCF-7 and MDA-MB-231 breast cancer cell lines to examine drug efficacy.Results:The entrapment efficiency and drug loading values for mitoxantrone were calculated to be 97 and 8.84%, respectively. The data from the drug release studies for the system indicated the release profile did not significantly change within a pH range of 5.5-7.4. The hemolysis ratio of the hybrid carrier was less than 5% even at the upper doses of 3 mg/mL, demonstrating its safety for intravenous injection with limited hemolysis and a long blood circulation time.Conclusion:The cell cytotoxicity results confirmed that the drug hybrid nanocomplex was more toxic to breast cancer cells compared with the free drug. Furthermore, the weakly cationic and small size particles prevented opsonin binding of nanocomplexes, improving blood circulation time and cancer tissue uptake.
Collapse
Affiliation(s)
- Abbas A. Ridha
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Soheila Kashanian
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Abbas H. Azandaryani
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ronak Rafipour
- Department of Chemistry, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Elahe Mahdavian
- Department of Chemistry and Physics, Louisiana State University in Shreveport, Shreveport, LA 71115, United States
| |
Collapse
|
26
|
Stabilization of chitosan-based polyelectrolyte nanoparticle cargo delivery biomaterials by a multiple ionic cross-linking strategy. Carbohydr Polym 2019; 231:115709. [PMID: 31888842 DOI: 10.1016/j.carbpol.2019.115709] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 11/21/2022]
Abstract
PolyElectrolyte Nanoparticles (PENs) obtained by layer-by-layer self-assembly of polycations/polyanions suffer from a lack of colloidal stability in physiological conditions. We report a simple innovative approach for increasing their stability by multiple ionic cross-linkers. Herein, a chitosan-based core was stabilized by polyanions such as tripolyphosphate and dextran sulfate at pHs of 3 (aPENs) and 8 (bPENs) to improve the quality of electrostatic interactions in the core and manage self-assembly of polyethyleneimine shell onto the core. The physicochemical properties of the particles were characterized by DLS, SEM, TEM, FT-IR, and TGA. TEM micrographs showed visible core/shell structures of bPENs. From particle size and polydispersity indices, the bPENs stability was salt concentration-dependent. The release profiles of PENs using nicotinic acid demonstrated sustained release in a pH-independent manner with a good fit of Korsmeyer-Peppas model. These results suggest that multiple ionic cross-linkers can be an efficient approach to increase the colloidal stability of PENs.
Collapse
|
27
|
Tinajero‐Díaz E, Martínez de Ilarduya A, Muñoz‐Guerra S. Block and Graft Copolymers Made of 16‐Membered Macrolactones and
l
‐Alanine: A Comparative Study. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ernesto Tinajero‐Díaz
- Dr. E. Tinajero‐Díaz, Dr. A. Martínez de Ilarduya, Prof. S. Muñoz‐Guerra Universitat Politècnica de Catalunya ETSEIB, Av. Diagonal 647 08028 Barcelona Spain
| | - Antxon Martínez de Ilarduya
- Dr. E. Tinajero‐Díaz, Dr. A. Martínez de Ilarduya, Prof. S. Muñoz‐Guerra Universitat Politècnica de Catalunya ETSEIB, Av. Diagonal 647 08028 Barcelona Spain
| | - Sebastián Muñoz‐Guerra
- Dr. E. Tinajero‐Díaz, Dr. A. Martínez de Ilarduya, Prof. S. Muñoz‐Guerra Universitat Politècnica de Catalunya ETSEIB, Av. Diagonal 647 08028 Barcelona Spain
| |
Collapse
|
28
|
Azandaryani AH, Kashanian S, Jamshidnejad-Tosaramandani T. Recent Insights into Effective Nanomaterials and Biomacromolecules Conjugation in Advanced Drug Targeting. Curr Pharm Biotechnol 2019; 20:526-541. [DOI: 10.2174/1389201020666190417125101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/18/2019] [Accepted: 04/01/2019] [Indexed: 12/11/2022]
Abstract
Targeted drug delivery, also known as smart drug delivery or active drug delivery, is a subcategory of nanomedicine. Using this strategy, the medication is delivered into the infected organs in the patient’s body or to the targeted sites inside the cells. In order to improve therapeutic efficiency and pharmacokinetic characteristics of the active pharmaceutical agents, conjugation of biomacromolecules such as proteins, nucleic acids, monoclonal antibodies, aptamers, and nanoparticulate drug carriers, has been mostly recommended by scientists in the last decades. Several covalent conjugation pathways are used for biomacromolecules coupling with nanomaterials in nanomedicine including carbodiimides and “click” mediated reactions, thiol-mediated conjugation, and biotin-avidin interactions. However, choosing one or a combination of these methods with suitable coupling for application to advanced drug delivery is essential. This review focuses on new and high impacted published articles in the field of nanoparticles and biomacromolecules coupling studies, as well as their advantages and applications.
Collapse
Affiliation(s)
- Abbas H. Azandaryani
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soheila Kashanian
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | |
Collapse
|
29
|
pH-responsive ultrasonic self-assembly spinosad-loaded nanomicelles and their antifungal activity to Fusarium oxysporum. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
A Comprehensive Physicochemical, In Vitro and Molecular Characterization of Letrozole Incorporated Chitosan-Lipid Nanocomplex. Pharm Res 2019; 36:62. [DOI: 10.1007/s11095-019-2597-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/26/2019] [Indexed: 02/01/2023]
|
31
|
Gomhor J Alqaraghuli H, Kashanian S, Rafipour R, Mahdavian E, Mansouri K. Development and characterization of folic acid-functionalized apoferritin as a delivery vehicle for epirubicin against MCF-7 breast cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S847-S854. [PMID: 30449179 DOI: 10.1080/21691401.2018.1516671] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epirubicin (Epr) is an effective chemotherapeutic drug; however, the clinical amenability of Epr is limited by its highly toxic interaction with normal cells. This toxicity can be decreased by utilizing nanocarriers and targeted drug delivery systems. This work describes an approach for the delivery of Epr via encapsulation in the horse spleen apoferritin (HsAFr) cavity. The encapsulation was achieved by the disassembling of apoferritin into subunits at pH 2 followed by its reformation at pH 7.4 in the presence of Epr. The surface of HsAFr-encapsulated Epr was modified with folic acid (FA) for optimal targeting of breast cancer cells (MCF-7). The use of FA to functionalize HsAFr could enhance the cellular uptake efficiency via FA-receptor-mediated endocytosis. UV-vis spectroscopy, fluorescence spectroscopy, circular dichroism (CD) and transmission electron microscopy (TEM) were utilized for structural characterization of the HsAFr-Epr and HsAFr-Epr-FA complexes. The comparison of the anti-cancer activities across the HsAFr-Epr-FA complex and the free Epr drug was performed using the MTT viability assay on MCF-7.
Collapse
Affiliation(s)
- Hasanain Gomhor J Alqaraghuli
- a Department of Applied Chemistry, Faculty of Chemistry , Razi University , Kermanshah , Iran.,b Department of General Sciences, College of Basic Education , Al-Muthanna University , Al-Muthanna , Iraq
| | - Soheila Kashanian
- c Faculty of Chemistry , Sensor and Biosensor Research Center (SBRC) & Nanoscience and Nanotechnology Research Center (NNRC), Razi University , Kermanshah , Iran.,d Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences , Kermanshah, Iran
| | - Ronak Rafipour
- e Department of Chemistry , Kermanshah Branch, Islamic Azad University , Kermanshah , Iran
| | - Elahe Mahdavian
- f Department of Chemistry and Physics , Louisiana State University in Shreveport , Shreveport , LA , USA
| | - Kamran Mansouri
- g Medical Biology Research Center, Kermanshah University of Medical Sciences , Kermanshah , Iran
| |
Collapse
|
32
|
Zhang J, Wang Y, Jiang Y, Liu T, Luo Y, Diao E, Cao Y, Chen L, Zhang L, Gu Q, Zhou J, Sun F, Zheng W, Liu J, Li X, Hu W. Enhanced cytotoxic and apoptotic potential in hepatic carcinoma cells of chitosan nanoparticles loaded with ginsenoside compound K. Carbohydr Polym 2018; 198:537-545. [PMID: 30093032 DOI: 10.1016/j.carbpol.2018.06.121] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 11/18/2022]
Abstract
Ginsenoside compound K (CK) has been shown to exhibit anticancer properties. In this study, chitosan nanoparticles loaded with ginsenoside compound K (CK-NPs) were prepared as a delivery system using a self-assembly technique with amphipathic deoxycholic acid-O carboxymethyl chitosan as the carrier, which improved the water solubility of CK. By evaluating drug loading, entrapment efficiency, and in vitro release behavior, the feasibility of CK-NPs as a drug carrier nanoparticle for the treatment of human hepatic carcinoma cells (HepG2) was investigated. Result revealed that CK and CK-NPs showed a dose-dependent inhibitory effect on HepG2 cells with IC50 values of 23.33 and 16.58 μg/mL, respectively. Furthermore, fluorescence imaging demonstrated that CK-NPs promoted cellular uptake in vitro. Therefore, all results indicated that CK-NPs might be a novel drug delivery system to improve the solubility and enhance the cytotoxic and apoptotic potentials of CK for effective liver cancer chemotherapy.
Collapse
Affiliation(s)
- Jianmei Zhang
- College of Food Science and Pharmacology, Xinjiang Agricultural University, Xinjiang, 830052, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Yijun Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Yunyao Jiang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Tingwu Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Yanyan Luo
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Enjie Diao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Yufeng Cao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Liang Chen
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Liang Zhang
- College of Food Science and Pharmacology, Xinjiang Agricultural University, Xinjiang, 830052, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Qian Gu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Jinyi Zhou
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Fengting Sun
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Wancai Zheng
- College of Food Science and Pharmacology, Xinjiang Agricultural University, Xinjiang, 830052, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Jianxun Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Xueqin Li
- Department of Gerontology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huanghe West Road, Huaian, 223300, China.
| | - Weicheng Hu
- College of Food Science and Pharmacology, Xinjiang Agricultural University, Xinjiang, 830052, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China.
| |
Collapse
|