1
|
Panigrahi SK, Das S, Majumdar S. A comparative analysis of PLA and PCL microparticles for hydrophilic and hydrophobic drugs. J Microencapsul 2024; 41:804-817. [PMID: 39498959 DOI: 10.1080/02652048.2024.2423631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024]
Abstract
This study aims to investigate Polylactic Acid (PLA) and Polycaprolactone (PCL) polymers for microencapsulation of hydrophilic and hydrophobic anti-glaucoma drugs using an emulsion-based solvent evaporation technique. Microparticle size was analysed using optical microscopy, while drug-polymer interactions through Dynamic-Light-Scattering (DLS) and Fourier-Transform-Infra-red/Attenuated-Total-Reflection spectroscopy (FTIR/ATR). In vitro, drug release studies were performed to investigate drug encapsulation and release profiles. Spherical microparticles, with particle size 94 ± 6.9 μm for PCL-based and 100 ± 3.74 μm for PLA-based formulation, were obtained. Drug release studies showed 100% release over about 32 days, with encapsulation efficiency (%EE) and drug loading (%w/w) reaching up to 95 and 2.84% for PLA-based and 97 and 2.91% for PCL-based microparticles, respectively. DLS studies reveal an increase in hydrodynamic radius (RH), which correlates to enhanced drug encapsulation. So, the nature of the drug and polymer significantly impacts drug encapsulation and release, with drug-polymer interactions playing a crucial role alongside experimental parameters.
Collapse
Affiliation(s)
- Subrat Kumar Panigrahi
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Sougat Das
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Saptarshi Majumdar
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| |
Collapse
|
2
|
Panigrahi SK, Das S, Majumdar S. Unveiling the potentials of hydrophilic and hydrophobic polymers in microparticle systems: Opportunities and challenges in processing techniques. Adv Colloid Interface Sci 2024; 326:103121. [PMID: 38457900 DOI: 10.1016/j.cis.2024.103121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
Conventional drug delivery systems are associated with various shortcomings, including low bioavailability and limited control over release. Biodegradable polymeric microparticles have emerged as versatile carriers in drug delivery systems addressing all these challenges. This comprehensive review explores the dynamic landscape of microparticles, considering the role of hydrophilic and hydrophobic materials. Within the continuously evolving domain of microparticle preparation methods, this review offers valuable insights into the latest advancements and addresses the factors influencing microencapsulation, which is pivotal for harnessing the full potential of microparticles. Exploration of the latest research in this dynamic field unlocks the possibilities of optimizing microencapsulation techniques to produce microparticles of desired characteristics and properties for different applications, which can help contribute to the ongoing evolution in the field of pharmaceutical science.
Collapse
Affiliation(s)
- Subrat Kumar Panigrahi
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India
| | - Sougat Das
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India
| | - Saptarshi Majumdar
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India.
| |
Collapse
|
3
|
Hembram KC. Poly(lactic acid) (PLA) as drug and gene delivery system for tumor. CANCER THERAPY 2024:143-177. [DOI: 10.1016/b978-0-443-15401-0.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Vlachopoulos A, Karlioti G, Balla E, Daniilidis V, Kalamas T, Stefanidou M, Bikiaris ND, Christodoulou E, Koumentakou I, Karavas E, Bikiaris DN. Poly(Lactic Acid)-Based Microparticles for Drug Delivery Applications: An Overview of Recent Advances. Pharmaceutics 2022; 14:359. [PMID: 35214091 PMCID: PMC8877458 DOI: 10.3390/pharmaceutics14020359] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
The sustained release of pharmaceutical substances remains the most convenient way of drug delivery. Hence, a great variety of reports can be traced in the open literature associated with drug delivery systems (DDS). Specifically, the use of microparticle systems has received special attention during the past two decades. Polymeric microparticles (MPs) are acknowledged as very prevalent carriers toward an enhanced bio-distribution and bioavailability of both hydrophilic and lipophilic drug substances. Poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA), and their copolymers are among the most frequently used biodegradable polymers for encapsulated drugs. This review describes the current state-of-the-art research in the study of poly(lactic acid)/poly(lactic-co-glycolic acid) microparticles and PLA-copolymers with other aliphatic acids as drug delivery devices for increasing the efficiency of drug delivery, enhancing the release profile, and drug targeting of active pharmaceutical ingredients (API). Potential advances in generics and the constant discovery of therapeutic peptides will hopefully promote the success of microsphere technology.
Collapse
Affiliation(s)
- Antonios Vlachopoulos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Georgia Karlioti
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Evangelia Balla
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Vasileios Daniilidis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Theocharis Kalamas
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Myrika Stefanidou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Nikolaos D. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Ioanna Koumentakou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Evangelos Karavas
- Pharmathen S.A., Pharmaceutical Industry, Dervenakion Str. 6, Pallini Attikis, GR-153 51 Attiki, Greece
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| |
Collapse
|
5
|
Journey to the Market: The Evolution of Biodegradable Drug Delivery Systems. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020935] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biodegradable polymers have been used as carriers in drug delivery systems for more than four decades. Early work used crude natural materials for particle fabrication, whereas more recent work has utilized synthetic polymers. Applications include the macroscale, the microscale, and the nanoscale. Since pioneering work in the 1960’s, an array of products that use biodegradable polymers to encapsulate the desired drug payload have been approved for human use by international regulatory agencies. The commercial success of these products has led to further research in the field aimed at bringing forward new formulation types for improved delivery of various small molecule and biologic drugs. Here, we review recent advances in the development of these materials and we provide insight on their drug delivery application. We also address payload encapsulation and drug release mechanisms from biodegradable formulations and their application in approved therapeutic products.
Collapse
|
6
|
Abu Hajleh MN, Al-Samydai A, Al-Dujaili EAS. Nano, micro particulate and cosmetic delivery systems of polylactic acid: A mini review. J Cosmet Dermatol 2020; 19:2805-2811. [PMID: 32954588 DOI: 10.1111/jocd.13696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/04/2020] [Accepted: 08/19/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Poly lactic acid and its copolymers are considered to be the preferred substrates for drug delivery devices. Poly lactic acid is a biocompatible, biodegradable and nontoxic polymer. It was approved by Food and Drug Administration and thought to be among the most attractive polymeric candidates intended for controlling drug delivery. It was utilized for the development of devices for the delivery of small molecules, proteins, genes, vaccines, anticancer drugs, and macromolecules. OBJECTIVES AND METHODS This manuscript lists the different techniques for synthesizing poly lactic acid-based nano and microparticles such as emulsion-based methods, precipitation-based methods, direct compositing methods, in situ forming micro-particles, and microfluidic technique. CONCLUSIONS In addition, it describes the application and use of poly lactic acid in biomedical and cosmetic delivery systems.
Collapse
Affiliation(s)
- Maha N Abu Hajleh
- Department of Cosmetic Science, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Ali Al-Samydai
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Emad A S Al-Dujaili
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Salgado C, Guénée L, Černý R, Allémann E, Jordan O. Nano wet milled celecoxib extended release microparticles for local management of chronic inflammation. Int J Pharm 2020; 589:119783. [PMID: 32827674 DOI: 10.1016/j.ijpharm.2020.119783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 11/16/2022]
Abstract
Osteoarthritis (OA), the most common form of arthritis, is characterized by chronic inflammation, degeneration of articular cartilage and whole joints. Local delivery by intra-articular (IA) injection of small molecules is an established treatment to relieve pain and improve joint motion, requiring month-lasting release of therapeutic drug doses. We incorporated anti-inflammatory drug celecoxib in poly (D, L-lactic acid) microparticles using two spray-drying approaches - either as a solid drug solution or embedded as milled nano drug. Differential scanning calorimetry, X-ray powder diffraction, electron microscopy and in vitro drug release allowed comparison of the microparticles. Both types resulted in spherical particles ranging from 20 to 40 μm mean size, with high drug loadings (10% to 50% w/w) and entrapment efficiencies > 80%. However, after 90 days, in vitro celecoxib release from nano drug embedded microparticles presented a significantly slower release in comparison to drug in solution microparticles, attributed to the presence of stabilized amorphous drug. No cytotoxicity was observed in human articular synoviocytes and PGE2 release was fully suppressed at low doses of both microparticulate systems. This study provides techniques to release high drug loads over months in a tunable manner, providing valuable options for the IA management of osteoarthritis.
Collapse
Affiliation(s)
- Carlota Salgado
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel-Servet 1211 Geneva, Switzerland
| | - Laure Guénée
- Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, 24 Quai Ernest Ansermet 1211 Geneva, Switzerland
| | - Radovan Černý
- Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, 24 Quai Ernest Ansermet 1211 Geneva, Switzerland
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel-Servet 1211 Geneva, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel-Servet 1211 Geneva, Switzerland.
| |
Collapse
|
8
|
Fraguas-Sánchez AI, Torres-Suárez AI, Cohen M, Delie F, Bastida-Ruiz D, Yart L, Martin-Sabroso C, Fernández-Carballido A. PLGA Nanoparticles for the Intraperitoneal Administration of CBD in the Treatment of Ovarian Cancer: In Vitro and In Ovo Assessment. Pharmaceutics 2020; 12:pharmaceutics12050439. [PMID: 32397428 PMCID: PMC7285054 DOI: 10.3390/pharmaceutics12050439] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
The intraperitoneal administration of chemotherapeutics has emerged as a potential route in ovarian cancer treatment. Nanoparticles as carriers for these agents could be interesting by increasing the retention of chemotherapeutics within the peritoneal cavity. Moreover, nanoparticles could be internalised by cancer cells and let the drug release near the biological target, which could increase the anticancer efficacy. Cannabidiol (CBD), the main nonpsychotropic cannabinoid, appears as a potential anticancer drug. The aim of this work was to develop polymer nanoparticles as CBD carriers capable of being internalised by ovarian cancer cells. The drug-loaded nanoparticles (CBD-NPs) exhibited a spherical shape, a particle size around 240 nm and a negative zeta potential (-16.6 ± 1.2 mV). The encapsulation efficiency was high, with values above 95%. A controlled CBD release for 96 h was achieved. Nanoparticle internalisation in SKOV-3 epithelial ovarian cancer cells mainly occurred between 2 and 4 h of incubation. CBD antiproliferative activity in ovarian cancer cells was preserved after encapsulation. In fact, CBD-NPs showed a lower IC50 values than CBD in solution. Both CBD in solution and CBD-NPs induced the expression of PARP, indicating the onset of apoptosis. In SKOV-3-derived tumours formed in the chick embryo model, a slightly higher-although not statistically significant-tumour growth inhibition was observed with CBD-NPs compared to CBD in solution. To sum up, poly-lactic-co-glycolic acid (PLGA) nanoparticles could be a good strategy to deliver CBD intraperitoneally for ovarian cancer treatment.
Collapse
Affiliation(s)
- Ana I. Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain; (A.I.F.-S.); (A.I.T.-S.); (C.M.-S.)
| | - Ana I. Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain; (A.I.F.-S.); (A.I.T.-S.); (C.M.-S.)
- Institute of Industrial Pharmacy, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marie Cohen
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (M.C.); (D.B.-R.); (L.Y.)
| | - Florence Delie
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland;
| | - Daniel Bastida-Ruiz
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (M.C.); (D.B.-R.); (L.Y.)
| | - Lucile Yart
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (M.C.); (D.B.-R.); (L.Y.)
| | - Cristina Martin-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain; (A.I.F.-S.); (A.I.T.-S.); (C.M.-S.)
- Institute of Industrial Pharmacy, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana Fernández-Carballido
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain; (A.I.F.-S.); (A.I.T.-S.); (C.M.-S.)
- Institute of Industrial Pharmacy, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913941741
| |
Collapse
|
9
|
Barrera MG, Tejada G, Leonardi D, Lamas MC, Salomón CJ. A Novel Prototype Device for Microencapsulation of Benznidazole: In Vitro/In Vivo Studies. AAPS PharmSciTech 2020; 21:112. [PMID: 32236813 DOI: 10.1208/s12249-020-01659-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/13/2020] [Indexed: 12/30/2022] Open
Abstract
This study was aimed to design a simple and novel prototype device for the production of polymeric microparticles. To prove the effectiveness of this device, benznidazole microparticles using chitosan as carrier and NaOH, KOH, or SLS as counter ions were used. For comparison, benznidazole microparticles were prepared by the conventional dripping technique (syringe and gauge) using the same excipients. Microparticles were characterized in terms of encapsulation efficiency, particle shape, size and surface topography, crystallinity characteristics, thermal behavior, and dissolution rate. Then, the pharmacokinetic parameters were evaluated after the oral administration of the microparticles to healthy Wistar rats. The prepared formulations, by means of this device, showed good drug encapsulation efficiency (> 70%). Release studies revealed an increased dissolution of benznidazole from chitosan microparticles prepared using the novel device. It achieved more than 90% in 60 min, while those of the conventional microparticles and raw drug achieved 65% and 68%, respectively, during the same period. Almost spherical benznidazole microparticles with a smooth surface and size around 10-30 μm were observed using scanning electron microscopy. Thermal analysis and X-ray diffraction studies suggested a partial reduction of drug crystallinity. Moreover, the relative oral bioavailability of the novel benznidazole microparticles showed that the area under the curve for the microencapsulated drug was 10.3 times higher than the raw drug. Thus, these findings indicate that the designed glass prototype device is a useful alternative to formulate benznidazole polymeric microparticles with improved biopharmaceutical properties and could be useful for other therapeutic microparticulate systems.
Collapse
|
10
|
Bartos C, Ambrus R, Katona G, Sovány T, Gáspár R, Márki Á, Ducza E, Ivanov A, Tömösi F, Janáky T, Szabó-Révész P. Transformation of Meloxicam Containing Nanosuspension into Surfactant-Free Solid Compositions to Increase the Product Stability and Drug Bioavailability for Rapid Analgesia. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4007-4020. [PMID: 31819372 PMCID: PMC6886534 DOI: 10.2147/dddt.s220876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/13/2019] [Indexed: 12/03/2022]
Abstract
Purpose The aim of this work was to study the influence of solidification of meloxicam (Mel) containing nanosuspension (nanoMel) on the physical stability and drug bioavailability of the products. The nanoMel sample had poly(vinyl alcohol) (PVA) as a protective polymer, but no surfactant as a further stabilizing agent because the final aim was to produce surfactant-free solid phase products as well. Methods The solidified samples produced by fluidization and lyophilization (fluidMel, lyoMel) were examined for particle size, crystallinity, and in vitro release of Mel compared to similar parameters of nanoMel. The products were subjected to an animal experiment using per oral administration to verify their bioavailability. Results Mel containing (1%) nanoMel sample was produced by wet milling process using an optimized amount of PVA (0.5%) which resulted in 130 nm as mean particle size and a significant reduction in the degree of crystallinity (13.43%) of Mel. The fluidization technique using microcrystalline cellulose (MCC) as carrier resulted in a quick conversion and no significant change in the critical product parameters. The process of lyophilization required a longer operation time, which resulted in the amorphization of the crystalline carrier (trehalose) and the recrystallization of Mel increased its particle size and crystallinity. The fluidMel and lyoMel samples had nearly five-fold higher relative bioavailability than nanoMel application by oral administration. The correlation between in vitro and in vivo studies showed that the fixed Mel nanoparticles on the surface of solid carriers (MCC, trehalose) in both the artificial gastric juice and the stomach of the animals rapidly reached saturation concentration leading to faster dissolution and rapid absorption. Conclusion The solidification of the nanosuspension not only increased the stability of the Mel nanoparticles but also allowed the preparation of surfactant-free compositions with excellent bioavailability which may be an important consideration for certain groups of patients to achieve rapid analgesia.
Collapse
Affiliation(s)
- Csaba Bartos
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Gábor Katona
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Tamás Sovány
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Róbert Gáspár
- Faculty of Medicine, Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Árpád Márki
- Faculty of Medicine, Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Eszter Ducza
- Faculty of Pharmacy, Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Anita Ivanov
- Faculty of Pharmacy, Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Ferenc Tömösi
- Interdisciplinary Excellence Centre, Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Tamás Janáky
- Interdisciplinary Excellence Centre, Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Piroska Szabó-Révész
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| |
Collapse
|
11
|
Astner AF, Hayes DG, O'Neill H, Evans BR, Pingali SV, Urban VS, Young TM. Mechanical formation of micro- and nano-plastic materials for environmental studies in agricultural ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:1097-1106. [PMID: 31390700 DOI: 10.1016/j.scitotenv.2019.06.241] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 06/10/2023]
Abstract
Release of microplastics (MPs) and nanoplastics (NPs) into agricultural fields is of great concern due to their reported ecotoxicity to organisms that provide beneficial service to the soil such as earthworms, and the potential ability of MPs and NPs to enter the food chain. Most fundamental studies of the fate and transport of plastic particulates in terrestrial environments employ idealized MP materials as models, such as monodisperse polystyrene spheres. In contrast, plastics that reside in agricultural soils consist of polydisperse fragments resulting from degraded films employed in agriculture. There exists a need for more representative materials in fundamental studies of the fate, transport, and ecotoxicity of MPs and NPs in soil ecosystems. The objective of this study was therefore to develop a procedure to produce MPs and NPs from agricultural plastics (a mulch film prepared biodegradable polymer polybutyrate adipate-co-terephthalate (PBAT) and low-density PE [LDPE]), and to characterize the resultant materials. Soaking of PBAT films under cryogenic conditions promoted embrittlement, similar to what occurs through environmental weathering. LDPE and cryogenically-treated PBAT underwent mechanical milling followed by sieve fractionation into MP fractions of 840 μm, 250 μm, 106 μm, and 45 μm. The 106 μm fraction was subjected to wet grinding to produce NPs of average particle size 366.0 nm and 389.4 nm for PBAT and LDPE, respectively. A two-parameter Weibull model described the MPs' particle size distributions, while NPs possessed bimodal distributions. Size reduction did not produce any changes in the chemical properties of the plastics, except for slight depolymerization and an increase of crystallinity resulting from cryogenic treatment. This study suggests that MPs form from cutting and high-impact mechanical degradation as would occur during the tillage into soil, and that NPs form from the MP fragments in regions of relative weakness that possess lower molecular weight polymers and crystallinity.
Collapse
Affiliation(s)
- A F Astner
- The University of Tennessee, Biosystems Engineering and Soil Science, 2506 E J. Chapman Dr, Knoxville, TN 37996, United States of America
| | - D G Hayes
- The University of Tennessee, Biosystems Engineering and Soil Science, 2506 E J. Chapman Dr, Knoxville, TN 37996, United States of America.
| | - H O'Neill
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - B R Evans
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - S V Pingali
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - V S Urban
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - T M Young
- The University of Tennessee, Center for Renewable Carbon, 2506 Jacob Dr, Knoxville, TN 37996, United States of America
| |
Collapse
|