1
|
Fahimirad S, Memarzadeh M, Jafari H, Isfahani MS, Almasi-Hashiani A, Abtahi H. Enhanced wound healing and antibacterial efficacy of a novel chitosan quaternary ammonium salt gel incorporating Echinacea purpurea extract. Carbohydr Res 2025; 552:109445. [PMID: 40081116 DOI: 10.1016/j.carres.2025.109445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/15/2025]
Abstract
Wound healing is a complex and dynamic process involving hemostasis, inflammation, proliferation, and remodeling. This study introduces Chitagel, a novel wound-healing gel formulated with 4 % (w/w) chitosan quaternary ammonium salt, 0.1 % (w/w) polyhexamethylene biguanide (PHMB), and 6 % (w/w) Echinacea purpurea extract, designed to provide antibacterial and antioxidant properties. To enhance hydration, 2 % (w/w) dexpanthenol, 10 % (w/w) glycerin, and 4 % (w/w) sorbitol were incorporated as humectants. In vitro analysis demonstrated 92.3 % inhibition of methicillin-resistant Staphylococcus aureus (MRSA) and 89.63 % antioxidant activity via the DPPH assay. Water content analysis confirmed a 62.9 % hydration level, facilitating a moist wound environment. Zeta potential measurement (+44.9 mV) indicated colloidal stability, ensuring sustained antimicrobial activity. In an MRSA-infected rat wound model, Chitagel significantly accelerated wound closure, achieving 82.5 % healing by day 15, compared to 54.3 % in the untreated group. The MTT assay showed enhanced fibroblast proliferation, with 400 μg/mL stimulating the highest cell viability. Histological analysis confirmed improved re-epithelialization, reduced inflammation, and granulation tissue formation. These findings highlight Chitagel as a promising therapeutic for infected wounds, combining antibacterial, antioxidant, and regenerative properties. Further clinical studies are required to validate its efficacy and safety in human applications and to establish its role as a novel wound-healing agent.
Collapse
Affiliation(s)
- Shohreh Fahimirad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | | | - Hasan Jafari
- Sepahan Wound Health Specialty Clinic, Isfahan, Iran
| | | | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
2
|
Tang Y, Ju X, Chen X, Li L. Advances in the biological production of sugar alcohols from biomass-derived xylose. World J Microbiol Biotechnol 2025; 41:110. [PMID: 40148723 DOI: 10.1007/s11274-025-04316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025]
Abstract
Sugar alcohols are a common class of low-calorie sweeteners. The advancement of technologies utilizing renewable resources has heightened interest in synthesizing sugar alcohols from biomass-derived xylose for cost down of process and sustainability. This review focuses on the potential of biomass-derived xylose and its effective conversion into sugar alcohols, underscoring the significance of this process in sustainable industrial applications. The two main approaches for producing sugar alcohols which include enzyme catalysis and microbial fermentation are thoroughly discussed. The microbial fermentation pathway relies on genetically engineered strains, which are modified to efficiently convert xylose into target sugar alcohols. Enzyme catalysis, on the other hand, directly converts xylose to sugar alcohols through specific reactions. In addition, strategies to improve product selectivity and reduce by-products are discussed in the paper, which are crucial for improving the economic viability and environmental sustainability of sugar alcohol production. Overall, utilizing xylose from biomass to produce sugar alcohols manifests environmental and economic benefits, indicating its substantial potential in the shift towards a low-carbon economy. Future studies may further explore cutting edge technologies to maximize the utilization of biomass-derived xylose and the sustainable production of sugar alcohols.
Collapse
Affiliation(s)
- Yue Tang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, P.R. China
| | - Xin Ju
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, P.R. China
| | - Xiaobao Chen
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, P.R. China
| | - Liangzhi Li
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, P.R. China.
| |
Collapse
|
3
|
Sakkal M, Arafat M, Yuvaraju P, Beiram R, AbuRuz S. Preparation and Characterization of Theophylline Controlled Release Matrix System Incorporating Poloxamer 407, Stearyl Alcohol, and Hydroxypropyl Methylcellulose: A Novel Formulation and Development Study. Polymers (Basel) 2024; 16:643. [PMID: 38475326 DOI: 10.3390/polym16050643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Theophylline (THN), a bronchodilator with potential applications in emerging conditions like COVID-19, requires a controlled-release delivery system due to its narrow therapeutic range and short half-life. This need is particularly crucial as some existing formulations demonstrate impaired functionality. This study aims to develop a new 12-h controlled-release matrix system (CRMS) in the form of a capsule to optimize dosing intervals. METHODS CRMSs were developed using varying proportions of poloxamer 407 (P-407), stearyl alcohol (STA), and hydroxypropyl methylcellulose (HPMC) through the fusion technique. Their in vitro dissolution profiles were then compared with an FDA-approved THN drug across different pH media. The candidate formulation underwent characterization using X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Additionally, a comprehensive stability study was conducted. RESULTS In vitro studies showed that adjusting the concentrations of excipients effectively controlled drug release. Notably, the CRMS formulation 15 (CRMS-F15), which was composed of 30% P-407, 30% STA, and 10% HPMC, closely matched the 12 h controlled-release profile of an FDA-approved drug across various pH media. Characterization techniques verified the successful dispersion of the drug within the matrix. Furthermore, CRMS-F15 maintained a consistent controlled drug release and demonstrated stability under a range of storage conditions. CONCLUSIONS The newly developed CRMS-F15 achieved a 12 h controlled release, comparable to its FDA-approved counterpart.
Collapse
Affiliation(s)
- Molham Sakkal
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates
| | - Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates
| | - Priya Yuvaraju
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Salahdein AbuRuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
4
|
Bertol G, Cobre ADF, Campos ML, Pontarolo R. Safety evaluation of Mikania glomerata and Mikania laevigata in healthy volunteers: A randomized, open label and multiple dose phase I clinical trial. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117018. [PMID: 37562463 DOI: 10.1016/j.jep.2023.117018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/24/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mikania glomerata (MG) and Mikania laevigata (ML) leaves are used interchangeably in Brazilian ethno-medicine, mainly for the treatment of respiratory diseases, but there is no clinical trial for the safety evaluation of these species at different doses. AIM OF THE STUDY To evaluate the safety of two oral solutions from each species, across two weeks of use and two doses. MATERIALS AND METHODS A randomized, open-label, multiple dose, two-arm trial. Participants (n = 19) were randomly allocated to one of the arms of the trial. Group 1 received 15 mL of MG oral solution twice daily for 7 days and then 30 mL twice daily for 7 days. Group 2 received ML oral solution in the same manner. After 14 days, the participants went through a washout period of 7 days before cross-over to the other group. Adverse events (AEs), clinical parameters and blood markers were monitored at the beginning (T0) and at the end of each week of the study, which was concluded after six weeks. AEs were classified as mild, moderate or severe, and according to their correlation with the medicine intake, the measured parameters were compared to T0 by generalized estimating equations (GEE) to determine those affected by the use of the oral solutions (p < 0.05). RESULTS MG was not correlated to any of the reported AEs; its use affected three of the evaluated parameters: total protein, diastolic blood pressure and urea, although all the changes were within the normal range for healthy individuals. ML was correlated to one moderate AE of pyrosis and the alteration of 12 parameters: erythrocytes, hemoglobin, hematocrit, monocytes, time of prothrombin, time of thromboplastin, albumin, alkaline phosphatase, total protein, urea, potassium and sodium. All changes were within the normal range for healthy individuals. CONCLUSION ML and MG are considered safe for humans under the dose regimen tested.
Collapse
Affiliation(s)
- Gustavo Bertol
- Post-graduation Program in Pharmaceutical Sciences, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Alexandre de Fátima Cobre
- Post-graduation Program in Pharmaceutical Sciences, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Michel Leandro Campos
- Health Sciences Institute, Federal University of Mato Grosso (UFMT), Sinop, Mato Grosso, Brazil
| | - Roberto Pontarolo
- Department of Pharmacy, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil.
| |
Collapse
|
5
|
Poka MS, Milne M, Wessels A, Aucamp M. Sugars and Polyols of Natural Origin as Carriers for Solubility and Dissolution Enhancement. Pharmaceutics 2023; 15:2557. [PMID: 38004536 PMCID: PMC10675835 DOI: 10.3390/pharmaceutics15112557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Crystalline carriers such as dextrose, sucrose, galactose, mannitol, sorbitol, and isomalt have been reported to increase the solubility, and dissolution rates of poorly soluble drugs when employed as carriers in solid dispersions (SDs). However, synthetic polymers dominate the preparation of drugs: excipient SDs have been created in recent years, but these polymer-based SDs exhibit the major drawback of recrystallisation upon storage. Also, the use of high-molecular-weight polymers with increased chain lengths brings forth problems such as increased viscosity and unnecessary bulkiness in the resulting dosage form. An ideal SD carrier should be hydrophilic, non-hygroscopic, have high hydrogen-bonding propensity, have a high glass transition temperature (Tg), and be safe to use. This review discusses sugars and polyols as suitable carriers for SDs, as they possess several ideal characteristics. Recently, the use of low-molecular-weight excipients has gained much interest in developing SDs. However, there are limited options available for safe, low molecular excipients, which opens the door again for sugars and polyols. The major points of this review focus on the successes and failures of employing sugars and polyols in the preparation of SDs in the past, recent advances, and potential future applications for the solubility enhancement of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Madan Sai Poka
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Molotlegi Street, Pretoria 0208, South Africa;
| | - Marnus Milne
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Molotlegi Street, Pretoria 0208, South Africa;
| | - Anita Wessels
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North-West University, Hoffman Street, Potchefstroom 2520, South Africa;
| | - Marique Aucamp
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Drive, Cape Town 7130, South Africa
| |
Collapse
|
6
|
Joshi A, Kishore N. Macromolecular crowding and preferential exclusion counteract the effect of protein denaturant: Biophysical aspects. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Cannabidiol and Cannabidiol Metabolites: Pharmacokinetics, Interaction with Food, and Influence on Liver Function. Nutrients 2022; 14:nu14102152. [PMID: 35631293 PMCID: PMC9144241 DOI: 10.3390/nu14102152] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
Cannabidiol (CBD) is widely available and marketed as having therapeutic properties. Over-the-counter CBD is unregulated, many of the therapeutic claims lack scientific support, and controversy exists as to the safety of CBD-liver interaction. The study aims were to compare the pharmacokinetics of commercial CBD and CBD metabolites following the ingestion of five different CBD formulations, determine the influence of CBD on food induced thermogenesis, determine the influence of food on CBD pharmacokinetics, and determine the influence of CBD on markers of liver function. Fourteen males (body mass index ≥ 25 kg/m2) were studied in a placebo-controlled, randomized, crossover design. On five occasions, different CBD formulations were ingested (one per visit). On two additional occasions, CBD or placebo was ingested following a meal. CBD servings were standardized to 30 mg. Considerable pharmacokinetic variability existed between formulations; this pharmacokinetic variability transferred to several of the metabolites. CBD did not influence food induced thermogenesis but did favorably modify early insulin and triglyceride responses. Food appreciably altered the pharmacokinetics of CBD. Finally, CBD did not evoke physiologically relevant changes in markers of liver function. Collectively, these data suggest that consumers should be aware of the appreciable pharmacokinetic differences between commercial CBD formulations, CBD is unlikely to influence the caloric cost of eating but may prove to be of some benefit to initial metabolic responses, consuming CBD with food alters the dynamics of CBD metabolism and increases systemic availability, and low-dose CBD probably does not represent a risk to normal liver function.
Collapse
|
8
|
Erian AM, Sauer M. Utilizing yeasts for the conversion of renewable feedstocks to sugar alcohols - a review. BIORESOURCE TECHNOLOGY 2022; 346:126296. [PMID: 34798255 DOI: 10.1016/j.biortech.2021.126296] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Sugar alcohols are widely marketed compounds. They are useful building block chemicals and of particular value as low- or non-calorigenic sweeteners, serving as sugar substitutes in the food industry. To date most sugar alcohols are produced by chemical routes using pure sugars, but a transition towards the use of renewable, non-edible feedstocks is anticipated. Several yeasts are naturally able to convert renewable feedstocks, such as lignocellulosic substrates, glycerol and molasses, into sugar alcohols. These bioconversions often face difficulties to obtain sufficiently high yields and productivities necessary for industrialization. This review provides insight into the most recent studies on utilizing yeasts for the conversion of renewable feedstocks to diverse sugar alcohols, including xylitol, erythritol, mannitol and arabitol. Moreover, metabolic approaches are highlighted that specifically target shortcomings of sugar alcohol production by yeasts from these renewable substrates.
Collapse
Affiliation(s)
- Anna Maria Erian
- CD-Laboratory for Biotechnology of Glycerol, Muthgasse 18, Vienna, Austria; University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Michael Sauer
- CD-Laboratory for Biotechnology of Glycerol, Muthgasse 18, Vienna, Austria; University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
9
|
S S, S P, S P, Moses JA, Anandharamakrishnan C. Production of Low Glycemic Index Chocolates with Natural Sugar Substitutes. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2021. [DOI: 10.1080/15428052.2021.1978364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shanthamma S
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (Iifpt), Ministry of Food Processing Industries, Government of India, Thanjavur, India
| | - Priyanka S
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (Iifpt), Ministry of Food Processing Industries, Government of India, Thanjavur, India
| | - Priyanga S
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (Iifpt), Ministry of Food Processing Industries, Government of India, Thanjavur, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (Iifpt), Ministry of Food Processing Industries, Government of India, Thanjavur, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (Iifpt), Ministry of Food Processing Industries, Government of India, Thanjavur, India
| |
Collapse
|
10
|
Cumulative Risks of Excipients in Pediatric Phytomucolytic Syrups: The Implications for Pharmacy Practice. Sci Pharm 2021. [DOI: 10.3390/scipharm89030032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Expectorant phytomucolytic syrups are widely used pediatric OTC-medicines. Physicians, pediatricians, and pharmacists are traditionally concerned with the efficacy of the active ingredients in cough syrups, and rarely consider the safety aspects of excipients that however are not absolutely “inactive” and are proved to initiate some negative reactions and interactions with other drugs. This paper presents a review, categorization, and comparative analysis of the safety profile of excipients contained in the 22 best-selling OTC pediatric phytomucolytic syrups available in pharmaceutical markets in Ukraine and Germany and proposes an approach to the consideration of the excipients’ safety risks for a pharmacist in the process of pharmaceutical care. The study has revealed that only one of the twenty-two analyzed syrups does not contain any potentially harmful excipients. The results of this analysis were used for developing a specific decision tool for pharmacists that can be used for minimizing excipient-initiated reactions when delivering OTC phytomucolytic syrups for children.
Collapse
|
11
|
Liguori F, Moreno-Marrodan C, Barbaro P. Biomass-derived chemical substitutes for bisphenol A: recent advancements in catalytic synthesis. Chem Soc Rev 2021; 49:6329-6363. [PMID: 32749443 DOI: 10.1039/d0cs00179a] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bisphenol A is an oil-derived, large market volume chemical with a wide spectrum of applications in plastics, adhesives and thermal papers. However, bisphenol A is not considered safe due to its endocrine disrupting properties and reproductive toxicity. Several functional substitutes of bisphenol A have been proposed in the literature, produced from plant biomass. Unless otherwise specified, the present review covers the most significant contributions that appeared in the time span January 2015-August 2019, describing the sustainable catalytic synthesis of rigid diols from biomass derivatives. The focus is thereupon on heterogeneous catalysis, use of green solvents and mild conditions, cascade processes in one-pot, and continuous flow setups. More than 500 up-to-date references describe the various substitutes proposed and the catalytic methods for their manufacture, broken down according to the main biomass types from which they originate.
Collapse
Affiliation(s)
- Francesca Liguori
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Carmen Moreno-Marrodan
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Pierluigi Barbaro
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
12
|
Zappaterra F, Rodriguez MEM, Summa D, Semeraro B, Costa S, Tamburini E. Biocatalytic Approach for Direct Esterification of Ibuprofen with Sorbitol in Biphasic Media. Int J Mol Sci 2021; 22:3066. [PMID: 33802769 PMCID: PMC8002397 DOI: 10.3390/ijms22063066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) introduced in the 1960s and widely used as an analgesic, anti-inflammatory, and antipyretic. In its acid form, the solubility of 21 mg/L greatly limits its bioavailability. Since the bioavailability of a drug product plays a critical role in the design of oral administration dosage, this study investigated the enzymatic esterification of ibuprofen as a strategy for hydrophilization. This work proposes an enzymatic strategy for the covalent attack of highly hydrophilic molecules using acidic functions of commercially available bioactive compounds. The poorly water-soluble drug ibuprofen was esterified in a hexane/water biphasic system by direct esterification with sorbitol using the cheap biocatalyst porcine pancreas lipase (PPL), which demonstrated itself to be a suitable enzyme for the effective production of the IBU-sorbitol ester. This work reports the optimization of the esterification reaction.
Collapse
Affiliation(s)
- Federico Zappaterra
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy; (F.Z.); (D.S.); (E.T.)
| | - Maria Elena Maldonado Rodriguez
- Department of Biotechnology Engineering of the RRNN, Salesian Polytechnic University, Av. 12 de Octubre y Wilson, Quito 170109, Ecuador;
| | - Daniela Summa
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy; (F.Z.); (D.S.); (E.T.)
| | | | - Stefania Costa
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy; (F.Z.); (D.S.); (E.T.)
| | - Elena Tamburini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy; (F.Z.); (D.S.); (E.T.)
| |
Collapse
|
13
|
Ruiz-Picazo A, Lozoya-Agullo I, González-Álvarez I, Bermejo M, González-Álvarez M. Effect of excipients on oral absorption process according to the different gastrointestinal segments. Expert Opin Drug Deliv 2020; 18:1005-1024. [PMID: 32842776 DOI: 10.1080/17425247.2020.1813108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Excipients are necessary to develop oral dosage forms of any Active Pharmaceutical Ingredient (API). Traditionally, excipients have been considered inactive and inert substances, but, over the years, numerous studies have contradicted this belief. This review focuses on the effect of excipients on the physiological variables affecting oral absorption along the different segments of the gastrointestinal tract. The effect of excipients on the segmental absorption variables are illustrated with examples to help understand the complexity of predicting their in vivo effects. AREAS COVERED The effects of excipients on disintegration, solubility and dissolution, transit time, and absorption are analyzed in the context of the different gastrointestinal segments and the physiological factors affecting release and membrane permeation. The experimental techniques used to study excipient effects and their human predictive ability are reviewed. EXPERT OPINION The observed effects of excipient in oral absorption process have been characterized in the past, mainly in vitro (i.e. in dissolution studies, in vitro cell culture methods or in situ animal studies). Unfortunately, a clear link with their effects in vivo, i.e. their impact on Cmax or AUC, which need a mechanistic approach is still missing. The information compiled in this review leads to the conclusion that the effect of excipients in API oral absorption and bioavailability is undeniable and shows the need of implementing standardized and reproducible preclinical tools coupled with mechanistic and predictive physiological-based models to improve the current empirical retrospective approach.
Collapse
Affiliation(s)
- Alejandro Ruiz-Picazo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Isabel Lozoya-Agullo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Isabel González-Álvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Marival Bermejo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Marta González-Álvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| |
Collapse
|
14
|
Shinde RA, Ghosh R, Prasanthan P, Kishore N. Unraveling thermodynamic and conformational correlations in action of osmolytes on hen egg white lysozyme. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Ramadon D, Permana AD, Courtenay AJ, McCrudden MTC, Tekko IA, McAlister E, Anjani QK, Utomo E, McCarthy HO, Donnelly RF. Development, Evaluation, and Pharmacokinetic Assessment of Polymeric Microarray Patches for Transdermal Delivery of Vancomycin Hydrochloride. Mol Pharm 2020; 17:3353-3368. [PMID: 32706591 DOI: 10.1021/acs.molpharmaceut.0c00431] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) can cause harmful and potentially deadly infections. Vancomycin remains the first-line antibiotic treatment for MRSA-derived infections. Nevertheless, as a peptide drug, it is poorly absorbed when administered orally because of its high molecular weight and low permeability in the gastrointestinal tract and is therefore administered intravenously for the treatment of systemic diseases. In order to circumvent some of the many drawbacks associated with intravenous injection, other routes of drug delivery should be investigated. One of the strategies which has been employed to enhance transdermal drug delivery is based on microarray patches (MAPs). This work, for the first time, describes successful transdermal delivery of vancomycin hydrochloride (VCL) using dissolving MAPs (DMAPs) and hydrogel-forming MAPs (HFMAPs). VCL was formulated into DMAPs and reservoirs [film dosage forms, lyophilized wafers, and compressed tablets (CSTs)] using excipients such as poly(vinyl pyrrolidone), poly(vinyl alcohol), sodium hyaluronate, d-sorbitol, and glycerol. In this study, HFMAPs were manufactured using aqueous blends containing poly(methylvinyl ether-co-maleic acid) cross-linked by esterification with poly(ethylene glycol). The VCL-loaded CSTs (60% w/w VCL) were the most promising reservoirs to be integrated with HFMAPs based on the physicochemical evaluations performed. Both HFMAPs and DMAPs successfully delivered VCL in ex vivo studies with the percentage of drug that permeated across the neonatal porcine skin recorded at 46.39 ± 8.04 and 7.99 ± 0.98%, respectively. In in vivo studies, the area under the plasma concentration time curve from time zero to infinity (AUC0-∞) values of 162.04 ± 61.84 and 61.01 ± 28.50 μg h/mL were achieved following the application of HFMAPs and DMAPs, respectively. In comparison, the AUC0-∞ of HFMAPs was significantly greater than that of the oral administration control group, which showed an AUC0-∞ of 30.50 ± 9.18 μg h/mL (p < 0.05). This work demonstrates that transdermal delivery of VCL is feasible using DMAPs and HFMAPs and could prove effective in the treatment of infectious diseases caused by MRSA, such as skin and soft tissue infections, lymphatic-related infections, and neonatal sepsis.
Collapse
Affiliation(s)
- Delly Ramadon
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.,Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
| | - Andi Dian Permana
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.,Department of Pharmaceutics, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Aaron J Courtenay
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.,School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, United Kingdom
| | - Maelíosa T C McCrudden
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Ismaiel A Tekko
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.,Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Aleppo University, Aleppo 12289, Syria
| | - Emma McAlister
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Emilia Utomo
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| |
Collapse
|
16
|
Ruiz-Picazo A, Gonzalez-Alvarez M, Gonzalez-Alvarez I, Bermejo M. Effect of Common Excipients on Intestinal Drug Absorption in Wistar Rats. Mol Pharm 2020; 17:2310-2318. [DOI: 10.1021/acs.molpharmaceut.0c00023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alejandro Ruiz-Picazo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Marta Gonzalez-Alvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Isabel Gonzalez-Alvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Marival Bermejo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| |
Collapse
|
17
|
Liposomes for Enhanced Bioavailability of Water-Insoluble Drugs: In Vivo Evidence and Recent Approaches. Pharmaceutics 2020; 12:pharmaceutics12030264. [PMID: 32183185 PMCID: PMC7151102 DOI: 10.3390/pharmaceutics12030264] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
It has been known that a considerable number of drugs in clinical use or under development are water-insoluble drugs with poor bioavailability (BA). The liposomal delivery system has drawn attention as one of the noteworthy approaches to increase dissolution and subsequently absorption in the gastrointestinal (GI) tract because of its biocompatibility and ability to encapsulate hydrophobic molecules in the lipid domain. However, there have been several drawbacks, such as structural instability in the GI tract and poor permeability across intestinal epithelia because of its relatively large size. In addition, there have been no liposomal formulations approved for oral use to date, despite the success of parenteral liposomes. Nevertheless, liposomal oral delivery has resurged with the rapid increase of published studies in the last decade. However, it is discouraging that most of this research has been in vitro studies only and there have not been many water-insoluble drugs with in vivo data. The present review focused on the in vivo evidence for the improved BA of water-insoluble drugs using liposomes to resolve doubts raised concerning liposomal oral delivery and attempted to provide insight by highlighting the approaches used for in vivo achievements.
Collapse
|