1
|
Orrico VGD, Grant T, Faivovich J, Rivera-Correa M, Rada MA, Lyra ML, Cassini CS, Valdujo PH, Schargel WE, Machado DJ, Wheeler WC, Barrio-Amorós C, Loebmann D, Moravec J, Zina J, Solé M, Sturaro MJ, Peloso PLV, Suarez P, Haddad CFB. The phylogeny of Dendropsophini (Anura: Hylidae: Hylinae). Cladistics 2021; 37:73-105. [PMID: 34478175 DOI: 10.1111/cla.12429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 11/29/2022] Open
Abstract
The relationships of the hyline tribe Dendropsophini remain poorly studied, with most published analyses dealing with few of the species groups of Dendropsophus. In order to test the monophyly of Dendropsophini, its genera, and the species groups currently recognized in Dendropsophus, we performed a total evidence phylogenetic analysis. The molecular dataset included sequences of three mitochondrial and five nuclear genes from 210 terminals, including 12 outgroup species, the two species of Xenohyla, and 93 of the 108 recognized species of Dendropsophus. The phenomic dataset includes 46 terminals, one per species (34 Dendropsophus, one Xenohyla, and 11 outgroup species). Our results corroborate the monophyly of Dendropsophini and the reciprocal monophyly of Dendropsophus and Xenohyla. Some species groups of Dendropsophus are paraphyletic (the D. microcephalus, D. minimus, and D. parviceps groups, and the D. rubicundulus clade). On the basis of our results, we recognize nine species groups; for three of them (D. leucophyllatus, D. microcephalus, and D. parviceps groups) we recognize some nominal clades to highlight specific morphology or relationships and facilitate species taxonomy. We further discuss the evolution of oviposition site selection, where our results show multiple instances of independent evolution of terrestrial egg clutches during the evolutionary history of Dendropsophus.
Collapse
Affiliation(s)
- Victor G D Orrico
- Tropical Herpetology Laboratory, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, CEP 45662-900, Brazil
| | - Taran Grant
- Laboratório de Anfíbios, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, CEP 05508-090, Brazil
| | - Julian Faivovich
- División Herpetología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"-CONICET, Angel Gallardo 470, Buenos Aires, C1405DJR, Argentina.,Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mauricio Rivera-Correa
- Grupo Herpetológico de Antioquia, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Marco A Rada
- Laboratório de Anfíbios, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, CEP 05508-090, Brazil
| | - Mariana L Lyra
- Departamento de Biodiversidade and Centro de Aquicultura, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Av. 24A 1515, Rio Claro, CEP 13506-900, Brazil
| | - Carla S Cassini
- Tropical Herpetology Laboratory, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, CEP 45662-900, Brazil
| | - Paula H Valdujo
- Laboratório de Ecologia da Paisagem - Superintendência de Conservação, WWF-Brasil, Entre Quadra SHIS EQL 6/8 Conjunto E, Setor de Habitações Individuais Sul, Brasília, CEP 71620-430, Brazil
| | - Walter E Schargel
- Department of Biology, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Denis J Machado
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West, New York, NY, 10024, USA
| | | | - Daniel Loebmann
- Laboratório de Vertebrados, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, CEP 96.203-900, Brazil
| | - Jiří Moravec
- Department of Zoology, National Museum, Cirkusová 1740, 193 00 Prague 9, Prague, Czech Republic
| | - Juliana Zina
- Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Av. José Moreira Sobrinho, Jequié, CEP 45205-490, Brazil
| | - Mirco Solé
- Tropical Herpetology Laboratory, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, CEP 45662-900, Brazil
| | - Marcelo J Sturaro
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Av. Professor Artur Riedel, 275, Jardim Eldorado, Diadema, CEP 09972-270, Brazil.,Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Avenida Perimetral 1901, Terra Firme, Belém, CEP 66017-970, Brazil
| | - Pedro L V Peloso
- Instituto de Ciências Biológicas, Universidade Federal do Pará, R. Augusto Corrêa, 1, Guamá, Belém, 66075-110, Brazil
| | - Pablo Suarez
- Instituto de Biología Subtropical (IBS), CONICET-UNaM, Bertoni 85, Puerto Iguazú, (3370), Argentina
| | - Célio F B Haddad
- Departamento de Biodiversidade and Centro de Aquicultura, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Av. 24A 1515, Rio Claro, CEP 13506-900, Brazil
| |
Collapse
|
2
|
Zattera ML, Gazolla CB, Soares ADA, Gazoni T, Pollet N, Recco-Pimentel SM, Bruschi DP. Evolutionary Dynamics of the Repetitive DNA in the Karyotypes of Pipa carvalhoi and Xenopus tropicalis (Anura, Pipidae). Front Genet 2020; 11:637. [PMID: 32793276 PMCID: PMC7385237 DOI: 10.3389/fgene.2020.00637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/26/2020] [Indexed: 01/01/2023] Open
Abstract
The large amphibian genomes contain numerous repetitive DNA components that have played an important role in the karyotypic diversification of this vertebrate group. Hypotheses based on the presumable primitive karyotype (2n = 20) of the anurans of the family Pipidae suggest that they have evolved principally through intrachromosomal rearrangements. Pipa is the only South American pipid, while all the other genera are found in Africa. The divergence of the South American lineages from the African ones occurred at least 136 million years ago and is thought to have had a strong biogeographic component. Here, we tested the potential of the repetitive DNA to enable a better understanding of the differentiation of the karyotype among the family Pipidae and to expand our capacity to interpret the chromosomal evolution in this frog family. Our results indicate a long history of conservation in the chromosome bearing the H3 histone locus, corroborating inferences on the chromosomal homologies between the species in pairs 6, 8, and 9. The chromosomal distribution of the microsatellite motifs also provides useful markers for comparative genomics at the chromosome level between Pipa carvalhoi and Xenopus tropicalis, contributing new insights into the evolution of the karyotypes of these species. We detected similar patterns in the distribution and abundance of the microsatellite arrangements, which reflect the shared organization in the terminal/subterminal region of the chromosomes between these two species. By contrast, the microsatellite probes detected a differential arrangement of the repetitive DNA among the chromosomes of the two species, allowing longitudinal differentiation of pairs that are identical in size and morphology, such as pairs 1, 2, 4, and 5. We also found evidence of the distinctive composition of the repetitive motifs of the centromeric region between the species analyzed in the present study, with a clear enrichment of the (CA) and (GA) microsatellite motifs in P. carvalhoi. Finally, microsatellite enrichment in the pericentromeric region of chromosome pairs 6, 8, and 9 in the P. carvalhoi karyotype, together with interstitial telomeric sequences (ITS), validate the hypothesis that pericentromeric inversions occurred during the chromosomal evolution of P. carvalhoi and reinforce the role of the repetitive DNA in the remodeling of the karyotype architecture of the Pipidae.
Collapse
Affiliation(s)
- Michelle Louise Zattera
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Camilla Borges Gazolla
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Amanda de Araújo Soares
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Thiago Gazoni
- Universidade Estadual Paulista (Unesp), Campus Rio Claro, Rio Claro, Brazil
| | - Nicolas Pollet
- Laboratoire Evolution Genomes Comportement Ecologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Daniel Pacheco Bruschi
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|