1
|
Kovalová A, Prouza V, Zavřel M, Hájek M, Dzijak R, Magdolenová A, Pohl R, Voburka Z, Parkan K, Vrabel M. Selection of Galectin-Binding Ligands from Synthetic Glycopeptide Libraries. Chempluschem 2024; 89:e202300567. [PMID: 37942669 DOI: 10.1002/cplu.202300567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
Galectins, a class of carbohydrate-binding proteins, play a crucial role in various physiological and disease processes. Therefore, the identification of ligands that efficiently bind these proteins could potentially lead to the development of new therapeutic compounds. In this study, we present a method that involves screening synthetic click glycopeptide libraries to identify lectin-binding ligands with low micromolar affinity. Our methodology, initially optimized using Concanavalin A, was subsequently applied to identify binders for the therapeutically relevant galectin 1. Binding affinities were assessed using various methods and showed that the selected glycopeptides exhibited enhanced binding potency to the target lectins compared to the starting sugar moieties. This approach offers an alternative means of discovering galectin-binding ligands as well as other carbohydrate-binding proteins, which are considered important therapeutic targets.
Collapse
Affiliation(s)
- Anna Kovalová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Vít Prouza
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, Prague, Czech Republic
| | - Martin Zavřel
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Miroslav Hájek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Rastislav Dzijak
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Alžbeta Magdolenová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Zdeněk Voburka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Kamil Parkan
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, Prague, Czech Republic
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| |
Collapse
|
2
|
Abstract
A voltammetric study of a series of alkyl and aryl S-glucosides unveiled the reactivity patterns of alkyl S-glucosides toward anodic oxidation and found noteworthy differences with the trends followed by aryl derivatives. The oxidation potential of alkyl S-glucosides, estimated herein from square-wave voltammetry peak potentials (Ep), depends on the steric properties of the aglycone. Glucosides substituted with bulky groups exhibit Ep values at voltages more positive than the values of those carrying small aglycones. This relationship, observed in all analyzed alkyl series, is evidenced by good linear correlations between Ep and Taft's steric parameters (ES) of the respective alkyl substituents. Moreover, the role of the aglycone's steric properties as a primary reactivity modulator is backed by poor correlations between Ep and the radical stabilization energies (RSEs) of the aglycone-derived thiyl radicals (RS•). In contrast, aryl glucosides' Ep values exhibit excellent correlations with the aryl substituents' Hammett parameters (σ+) and the ArS• RSEs, evidencing the inherent stability of the reactive radical intermediate as the primary factor controlling aryl glucoside's electrochemical reactivity. The reactivity differences between alkyl and aryl S-glucosides also extend to the protective group's effect on Ep. Alkyl S-glucosides' reactivity proved to be more sensitive to protective group exchange.
Collapse
Affiliation(s)
- Bhavesh Deore
- Department of Pharmaceutical Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Joseph E Ocando
- Department of Pharmaceutical Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States.,Department of Chemistry, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Lan D Pham
- Department of Pharmaceutical Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States.,Department of Chemistry, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Carlos A Sanhueza
- Department of Pharmaceutical Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| |
Collapse
|
3
|
Feng GJ, Luo T, Guo YF, Liu CY, Dong H. Concise Synthesis of 1-Thioalkyl Glycoside Donors by Reaction of Per-O-acetylated Sugars with Sodium Alkanethiolates under Solvent-Free Conditions. J Org Chem 2022; 87:3638-3646. [DOI: 10.1021/acs.joc.1c02171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Guang-Jing Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Tao Luo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Yang-Fan Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Chun-Yang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Hai Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
4
|
Mousavifar L, Vergoten G, Charron G, Roy R. Comparative Study of Aryl O-, C-, and S-Mannopyranosides as Potential Adhesion Inhibitors toward Uropathogenic E. coli FimH. Molecules 2019; 24:E3566. [PMID: 31581627 PMCID: PMC6804135 DOI: 10.3390/molecules24193566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 11/17/2022] Open
Abstract
A set of three mannopyranoside possessing identical 1,1'-biphenyl glycosidic pharmacophore but different aglyconic atoms were synthesized using either a palladium-catalyzed Heck cross coupling reaction or a metathesis reaction between their corresponding allylic glycoside derivatives. Their X-ray structures, together with their calculated 3D structures, showed strong indicators to explain the observed relative binding abilities against E. coli FimH as measured by a improved surface plasmon resonance (SPR) method. Amongst the O-, C-, and S-linked analogs, the C-linked analog showed the best ability to become a lead candidate as antagonist against uropathogenic E. coli with a Kd of 11.45 nM.
Collapse
Affiliation(s)
- Leila Mousavifar
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
- Glycovax Pharma Inc., 424 Guy, Suite 202, Montreal, Quebec H3J 1S6, Canada.
| | - Gérard Vergoten
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR8576 du CNRS, Université de Lille, F-59000 Lille, France.
| | - Guillaume Charron
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
- Glycovax Pharma Inc., 424 Guy, Suite 202, Montreal, Quebec H3J 1S6, Canada.
- INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, Québec H7V 1B7, Canada.
| |
Collapse
|
5
|
Wu Z, Cao A, Ding W, Zhu T, Shen P. Efficient synthesis of thioglycosylated kojic acid bys-glycosyl isothiouronium salts. J Carbohydr Chem 2016. [DOI: 10.1080/07328303.2016.1261881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhimeng Wu
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Aijie Cao
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Wenzhang Ding
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Tao Zhu
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Peng Shen
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Cagnoni AJ, Kovensky J, Uhrig ML. Design and synthesis of hydrolytically stable multivalent ligands bearing thiodigalactoside analogues for peanut lectin and human galectin-3 binding. J Org Chem 2014; 79:6456-67. [PMID: 24937526 DOI: 10.1021/jo500883v] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we describe the design and synthesis of a novel family of hydrolytically stable glycoclusters bearing thiodigalactoside (TDG) analogues as recognition elements of β-galactoside binding lectins. The TDG analogue was synthesized by thioglycosylation of a 6-S-acetyl-α-D-glucosyl bromide with the isothiouronium salt of 2,3,4,6-tetra-O-acetyl-β-D-galactose. Further propargylation of the TDG analogue allowed the coupling to azido-functionalized oligosaccharide scaffolds through copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) under microwave activation. The final mono-, di-, and tetravalent ligands were resistant to enzymatic hydrolisis by Escherichia coli β-galactosidase. Binding affinities to peanut agglutinin and human galectin-3 were measured by isothermal titration calorimetry which showed K(a) constants in the micromolar range as well as a multivalent effect. Monovalent ligand exhibited a binding affinity higher than that of thiodigalactoside. Docking studies performed with a model ligand on both β-galactoside binding lectins showed additional interactions between the triazole ring and lectin amino acid residues, suggesting a positive effect of this aromatic residue on the biological activity.
Collapse
Affiliation(s)
- Alejandro J Cagnoni
- CIHIDECAR-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Pabellón 2, Ciudad Universitaria 1428 Buenos Aires, Argentina
| | | | | |
Collapse
|
7
|
Mandal S, Nilsson UJ. Tri-isopropylsilyl thioglycosides as masked glycosyl thiol nucleophiles for the synthesis of S-linked glycosides and glyco-conjugates. Org Biomol Chem 2014; 12:4816-9. [DOI: 10.1039/c4ob00741g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tri-isopropylsilyl thio-glycosides (TIPS S-glycosides), readily synthesized from glycosyl halides, glycosyl acetates, or p-methoxyphenyl glycosides, were in one-pot de-silylated and S-alkylated, -acylated, or -glycosylated in high yields and short time.
Collapse
Affiliation(s)
- S. Mandal
- Centre for Analysis and Synthesis
- Department of Chemistry
- Lund University
- Lund, Sweden
| | - U. J. Nilsson
- Centre for Analysis and Synthesis
- Department of Chemistry
- Lund University
- Lund, Sweden
| |
Collapse
|
8
|
Ghosh T, Santra A, Misra AK. Appel-reagent-mediated transformation of glycosyl hemiacetal derivatives into thioglycosides and glycosyl thiols. Beilstein J Org Chem 2013; 9:974-982. [PMID: 23766814 PMCID: PMC3678522 DOI: 10.3762/bjoc.9.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/29/2013] [Indexed: 11/23/2022] Open
Abstract
A series of glycosyl hemiacetal derivatives have been transformed into thioglycosides and glycosyl thiols in a one-pot two-step reaction sequence mediated by Appel reagent (carbon tetrabromide and triphenylphosphine). 1,2-trans-Thioglycosides and β-glycosyl thiol derivatives were stereoselectively formed by the reaction of the in situ generated glycosyl bromides with thiols and sodium carbonotrithioate. The reaction conditions are reasonably simple and yields were very good.
Collapse
Affiliation(s)
- Tamashree Ghosh
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII-M, Kolkata-700054, India, Fax: 91-33-2355 3886
| | - Abhishek Santra
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII-M, Kolkata-700054, India, Fax: 91-33-2355 3886
| | - Anup Kumar Misra
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII-M, Kolkata-700054, India, Fax: 91-33-2355 3886
| |
Collapse
|
9
|
|
10
|
Vidadala SR, Thadke SA, Hotha S, Kashyap S. Synthesis of Thioglycosides from Propargyl Glycosides Exploiting Alkynophilic Gold Catalyst. J Carbohydr Chem 2012. [DOI: 10.1080/07328303.2011.652789] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Stereoselective glycosylations using oxathiane spiroketal glycosyl donors. Carbohydr Res 2012; 348:6-13. [DOI: 10.1016/j.carres.2011.07.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 07/16/2011] [Accepted: 07/20/2011] [Indexed: 11/19/2022]
|
12
|
Affiliation(s)
- Abhishek Santra
- a Bose Institute, Division of Molecular Medicine , P-1/12, C.I.T. Scheme VII-M, Kolkata, 700054, India
| | - Abhijit Sau
- a Bose Institute, Division of Molecular Medicine , P-1/12, C.I.T. Scheme VII-M, Kolkata, 700054, India
| | - Anup Kumar Misra
- a Bose Institute, Division of Molecular Medicine , P-1/12, C.I.T. Scheme VII-M, Kolkata, 700054, India
| |
Collapse
|
13
|
Gammon DW, Steenkamp DJ, Mavumengwana V, Marakalala MJ, Mudzunga TT, Hunter R, Munyololo M. Conjugates of plumbagin and phenyl-2-amino-1-thioglucoside inhibit MshB, a deacetylase involved in the biosynthesis of mycothiol. Bioorg Med Chem 2010; 18:2501-14. [DOI: 10.1016/j.bmc.2010.02.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 02/21/2010] [Accepted: 02/23/2010] [Indexed: 11/26/2022]
|
14
|
van Scherpenzeel M, Moret EE, Ballell L, Liskamp RMJ, Nilsson UJ, Leffler H, Pieters RJ. Synthesis and Evaluation of New Thiodigalactoside-Based Chemical Probes to Label Galectin-3. Chembiochem 2009; 10:1724-33. [DOI: 10.1002/cbic.200900198] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
A facile preparation of trehalose analogues: 1,1-thiodisaccharides. Carbohydr Res 2009; 344:1039-45. [DOI: 10.1016/j.carres.2009.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 03/03/2009] [Accepted: 03/17/2009] [Indexed: 02/02/2023]
|
16
|
|
17
|
Fascione MA, Adshead SJ, Stalford SA, Kilner CA, Leach AG, Turnbull WB. Stereoselective glycosylation using oxathiane glycosyl donors. Chem Commun (Camb) 2009:5841-3. [DOI: 10.1039/b913308a] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Ghosh S, Tiwari P, Pandey S, Misra AK, Chaturvedi V, Gaikwad A, Bhatnagar S, Sinha S. Synthesis and evaluation of antitubercular activity of glycosyl thio- and sulfonyl acetamide derivatives. Bioorg Med Chem Lett 2008; 18:4002-5. [DOI: 10.1016/j.bmcl.2008.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 05/08/2008] [Accepted: 06/03/2008] [Indexed: 10/22/2022]
|
19
|
|