1
|
Prichard K, Chau N, Xue J, Krauss M, Sakoff JA, Gilbert J, Bahnik C, Muehlbauer M, Radetzki S, Robinson PJ, Haucke V, McCluskey A. Inhibition Clathrin Mediated Endocytosis: Pitstop 1 and Pitstop 2 Chimeras. ChemMedChem 2024; 19:e202400253. [PMID: 38894585 DOI: 10.1002/cmdc.202400253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Twenty-five chimera compounds of Pitstop 1 and 2 were synthesised and screened for their ability to block the clathrin terminal domain-amphiphysin protein-protein interaction (NTD-PPI using an ELISA) and clathrin mediated endocytosis (CME) in cells. Library 1 was based on Pitstop 2, but no notable clathrin PPI or in-cell activity was observed. With the Pitstop 1, 16 analogues were produced with 1,8-naphthalic imide core as a foundation. Analogues with methylene spaced linkers and simple amides showed a modest to good range of PPI inhibition (7.6-42.5 μM, naphthyl 39 and 4-nitrophenyl 40 respectively) activity. These data reveal the importance of the naphthalene sulfonate moiety, with no des-SO3 analogue displaying PPI inhibition. This was consistent with the observed analogue docked poses within the clathrin terminal domain Site 1 binding pocket. Further modifications targeted the naphthalene imide moiety, with the installation of 5-Br (45 a), 5-OH (45 c) and 5-propyl ether (45 d) moieties. Among them, the OH 45 c and propyl ether 45 d retained PPI inhibition, with propyl ether 45 d being the most active with a PPI inhibition IC50=7.3 μM. This is 2x more potent than Pitstop 2 and 3x more potent than Pitstop 1.
Collapse
Affiliation(s)
- Kate Prichard
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Ngoc Chau
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Hawkesbury Road, Westmead, Sydney, Australia
| | - Jing Xue
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Hawkesbury Road, Westmead, Sydney, Australia
| | - Michael Krauss
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Jennette A Sakoff
- Experimental Therapeutics Group, Medical Oncology, Calvary Mater Newcastle Hospital, Edith Street, Waratah, NSW, 2298, Australia
| | - Jayne Gilbert
- Experimental Therapeutics Group, Medical Oncology, Calvary Mater Newcastle Hospital, Edith Street, Waratah, NSW, 2298, Australia
| | - Claudia Bahnik
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Maria Muehlbauer
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Silke Radetzki
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Hawkesbury Road, Westmead, Sydney, Australia
| | - Volker Haucke
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
3
|
Comprehensive Rehabilitation Therapy Plus Glucosamine Hydrochloride for Exercise-Induced Knee Injuries and the Effect on Knee Function of Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8120458. [PMID: 35795281 PMCID: PMC9252625 DOI: 10.1155/2022/8120458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 11/18/2022]
Abstract
Objective To assess the application value of comprehensive rehabilitation therapy plus glucosamine hydrochloride for exercise-induced knee injuries and its effect on knee function. Methods A total of 96 patients with an exercise-induced knee injury who were admitted to our hospital from February 2019 to February 202 were recruited and assigned at a ratio of 1 : 1 with matched general information to a control group (n = 45) or an experimental group (n = 51). Both groups of patients received comprehensive rehabilitation therapy, and the patients in the experimental group were daily given additional glucosamine hydrochloride tablets for 8 weeks. Results The experimental group showed a higher treatment efficacy than the control group (P < 0.001). After the treatment, the VAS scores and C-reactive protein of the two groups showed a decline, with a lower result in the experimental group than in the control group (P < 0.001). The Lysholm knee scores were increased in the two groups after the treatment, and the experimental group had a higher score (P < 0.001). After the treatment, patients of both groups showed reduced five-times-sit-to-stand-test (FTSST) results, with a better outcome obtained in the experimental group (P < 0.001). Conclusion Comprehensive rehabilitation therapy plus glucosamine hydrochloride effectively improves the clinical efficacy of exercise-induced knee joint injuries and enhances the knee joint rehabilitation of the patients.
Collapse
|
5
|
Sardar MYR, Krishnamurthy VR, Park S, Mandhapati AR, Wever WJ, Park D, Cummings RD, Chaikof EL. Synthesis of Lewis X-O-Core-1 threonine: A building block for O-linked Lewis X glycopeptides. Carbohydr Res 2017; 452:47-53. [PMID: 29065342 PMCID: PMC5682196 DOI: 10.1016/j.carres.2017.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/07/2017] [Accepted: 10/07/2017] [Indexed: 01/05/2023]
Abstract
LewisX (LeX) is a branched trisaccharide Galβ1→4(Fucα1→3)GlcNAc that is expressed on many cell surface glycoproteins and plays critical roles in innate and adaptive immune responses. However, efficient synthesis of glycopeptides bearing LeX remains a major limitation for structure-function studies of the LeX determinant. Here we report a total synthesis of a LeX pentasaccharide 1 using a regioselective 1-benzenesulfinyl piperidine/triflic anhydride promoted [3 + 2] glycosylation. The presence of an Fmoc-threonine amino acid facilitates incorporation of the pentasaccharide in solid phase peptide synthesis, providing a route to diverse O-linked LeX glycopeptides. The described approach is broadly applicable to the synthesis of a variety of complex glycopeptides containing O-linked LeX or sialyl LewisX (sLeX).
Collapse
Affiliation(s)
- Mohammed Y R Sardar
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Venkata R Krishnamurthy
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Simon Park
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Appi Reddy Mandhapati
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Walter J Wever
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Dayoung Park
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Richard D Cummings
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA
| | - Elliot L Chaikof
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
7
|
Perdih P, Cebašek S, Možir A, Zagar E. Post-polymerization modification of poly(L-glutamic acid) with D-(+)-glucosamine. Molecules 2014; 19:19751-68. [PMID: 25438084 PMCID: PMC6270794 DOI: 10.3390/molecules191219751] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 12/15/2022] Open
Abstract
Carboxyl functional groups of poly(L-glutamic acid) (PGlu) were modified with a D-(+)-glucosamine (GlcN) by amidation using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling reagent. The coupling reaction was performed in aqueous medium without protection of hydroxyl functional groups of D-(+)-glucosamine. Poly(L-glutamic acid) and GlcN functionalized polyglutamates (P(Glu-GlcN)) were thoroughly characterized by 1D and 2D NMR spectroscopy and SEC-MALS to gain detailed information on their structure, composition and molar mass characteristics. The results reveal successful functionalization with GlcN through the amide bond and also to a minor extent through ester bond formation in position 1 of GlcN. In addition, a ratio between the α- and β-form of glucosamine substituent coupled to polyglutamate repeating units as well as the content of residual dimethoxy triazinyl active ester moiety in the samples were evaluated.
Collapse
Affiliation(s)
- Peter Perdih
- National Institute of Chemistry, Laboratory for Polymer Chemistry and Technology, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Sašo Cebašek
- National Institute of Chemistry, Laboratory for Polymer Chemistry and Technology, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Alenka Možir
- National Institute of Chemistry, Laboratory for Polymer Chemistry and Technology, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Ema Zagar
- National Institute of Chemistry, Laboratory for Polymer Chemistry and Technology, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|