1
|
Goyer E, Khartabil H, Messire G, Muzard M, Plantier-Royon R. From carbohydrate-derived ketene dithioacetals to 1- C-thioglycals: a synthetic and theoretical insight. Org Biomol Chem 2025; 23:1161-1174. [PMID: 39692890 DOI: 10.1039/d4ob01723d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A strategy for the synthesis of 1-C-substituted thioglycals was developed from cyclic carbohydrate-derived ketene dithioacetals in a four-step sequence. The corresponding thioglycals, in two carbohydrate series, were first obtained by removal of the exocyclic glycosyl sulfoxide, followed by treatment with an organolithium reagent. Various electrophilic groups were introduced onto the thioglycal double bond after deprotonation and formation of a glycosyl lithium intermediate. A computational analysis was undertaken to gain a better understanding of the experimental results obtained in the two series.
Collapse
Affiliation(s)
- Eddy Goyer
- Université de Reims Champagne-Ardenne, CNRS, ICMR, Reims, France.
| | - Hassan Khartabil
- Université de Reims Champagne-Ardenne, CNRS, ICMR, Reims, France.
| | - Gatien Messire
- Université de Reims Champagne-Ardenne, CNRS, ICMR, Reims, France.
| | - Murielle Muzard
- Université de Reims Champagne-Ardenne, CNRS, ICMR, Reims, France.
| | | |
Collapse
|
2
|
Ding YN, Xu MZ, Huang YC, Ackermann L, Kong X, Liu XY, Liang YM. Stereoselective assembly of C-oligosaccharides via modular difunctionalization of glycals. Nat Commun 2024; 15:2794. [PMID: 38555346 PMCID: PMC10981691 DOI: 10.1038/s41467-024-47060-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
C-oligosaccharides are found in natural products and drug molecules. Despite the considerable progress made during the last decades, modular and stereoselective synthesis of C-oligosaccharides continues to be challenging and underdeveloped compared to the synthesis technology of O-oligosaccharides. Herein, we design a distinct strategy for the stereoselective and efficient synthesis of C-oligosaccharides via palladium-catalyzed nondirected C1-H glycosylation/C2-alkenylation, cyanation, and alkynylation of 2-iodoglycals with glycosyl chloride donors while realizing the difunctionalization of 2-iodoglycals. The catalysis approach tolerates various functional groups, including derivatives of marketed drugs and natural products. Notably, the obtained C-oligosaccharides can be further transformed into various C-glycosides while fully conserving the stereochemistry. The results of density functional theory (DFT) calculations support oxidative addition mechanism of alkenyl-norbornyl-palladacycle (ANP) intermediate with α-mannofuranose chloride and the high stereoselectivity of glycosylation is due to steric hindrance.
Collapse
Affiliation(s)
- Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, 730000, Lanzhou, Gansu Province, China
| | - Mei-Ze Xu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, 730000, Lanzhou, Gansu Province, China
| | - Yan-Chong Huang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, 730000, Lanzhou, Gansu Province, China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany.
| | - Xiangtao Kong
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 455000, Anyang, China.
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, 730000, Lanzhou, Gansu Province, China.
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, 730000, Lanzhou, Gansu Province, China.
| |
Collapse
|
3
|
Shinozuka T. Investigation of the Selectivity of the Palladium-Catalyzed Aroylation and Arylation of Stannyl Glycals with Aroyl Chlorides. ACS OMEGA 2021; 6:8447-8455. [PMID: 33817505 PMCID: PMC8015111 DOI: 10.1021/acsomega.1c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
The selectivity of the palladium-catalyzed aroylation and arylation of 1-tributylstannyl glycals with aroyl chlorides was investigated. The selectivity was controlled by the palladium catalyst, and high selectivity was achieved via ligand modification of the palladium catalyst. The reaction catalyzed by Pd(OAc)2 provided aroyl C-glycals with high selectivity, whereas the reaction catalyzed by Pd(PPh3)4 produced aryl C-glycals with diminished selectivity. The scope and limitation of the selectivity in this reaction are discussed.
Collapse
Affiliation(s)
- Tsuyoshi Shinozuka
- R&D Planning & Management Department,
R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
4
|
Bayer M, Stocker S, Maichle‐Mössmer C, Ziegler T. Synthesis of Symmetrical Dodeco‐6,7‐diuloses. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marius Bayer
- Institute of Organic Chemistry University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Simon Stocker
- Institute of Organic Chemistry University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Cäcilia Maichle‐Mössmer
- Institute of Organic Chemistry University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Thomas Ziegler
- Institute of Organic Chemistry University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| |
Collapse
|
5
|
Abstract
During the synthesis of symmetrical dodeco-6,7-diuloses that are potential candidates for inhibition of glycosidases, an unanticipated epoxide-oxetane rearrangement was observed. A bicyclic sugar consisting of a glycal moiety and an anomeric esterified furanose was oxidized under epoxidation conditions (mCPBA/KF). The isolation of the pure epoxide was not possible since a rapid reversible conversion accompanied by the migration of the ester group took place and resulted in the formation of an unusual oxetane-bridged disaccharide scaffold. X-ray diffractometric structure elucidation and the suggested mechanism of the rearrangement are provided.
Collapse
|
6
|
Bächle F, Siemens N, Ziegler T. Glycoconjugated Phthalocyanines as Photosensitizers for PDT – Overcoming Aggregation in Solution. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Felix Bächle
- Institute of Organic Chemistry University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology University of Greifswald Felix‐Hausdorff‐Str. 8 17487 Greifswald Germany
| | - Thomas Ziegler
- Institute of Organic Chemistry University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| |
Collapse
|