1
|
Wang YX, Gao JX, Wang XY, Zhang L, Liu CM. Antiproliferative effects of selective cyclooxygenase-2 inhibitor modulated by nimotuzumab in estrogen-dependent breast cancer cells. Tumour Biol 2012; 33:957-66. [PMID: 22252523 DOI: 10.1007/s13277-012-0324-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/04/2012] [Indexed: 11/30/2022] Open
Abstract
Breast cancer is the most common malignancy in women, and many breast cancer patients fail conventional treatment strategies of chemotherapy, radiation, and antiestrogen therapy. Research into the molecular pathways and biomarkers involved in the development of breast cancer should yield information that will guide therapeutic decisions. Epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) are involved in the carcinogenesis of breast cancer and exist tight crosstalk with estrogen receptor (ER) pathway. Combination of EGFR and COX-2 inhibitors, therefore, could be an effective strategy for reducing cell growth in estrogen-dependent breast cancer. In order to verify the effects of EGFR and COX-2 inhibitors, breast cancer cells MCF-7 and SKBR-3 were characterized for receptors status and then treated with respective inhibitors (nimotuzumab and celecoxib) alone and in combination. Both cell lines were sensitive to celecoxib, but not to nimotuzumab. However, combination of two drugs demonstrated synergistic effects on cell killing. Moreover, association of two drugs resulted in SKBR-3 cells, a further G0/G1 phase arrest than one drug alone. Downregulation of p-EGFR, p-Akt, p-mTOR, and amplified in breast cancer 1 (AIB1) were observed in both cell lines, and upregulation of E-cadherin was only found in MCF-7, after treatment with single agent or in combination. These studies suggest that nimotuzumab and celecoxib exert synergistic antiproliferation effects in breast cancer, which partly correlates with ER status. Due to Akt/mTOR, EMT and AIB1 pathways participate in this process, therefore, E-cadherin and AIB1 may be considered as possible biomarkers to predict response in ER-positive breast cancer cells treated with EGFR and COX-2 inhibitors.
Collapse
Affiliation(s)
- Ying-Xue Wang
- Department of Endocrinology, School of Clinical Medicine, Binzhou Medical University, No.661, Yellow-River Second Street, 256603 Binzhou, China.
| | | | | | | | | |
Collapse
|
2
|
Zajac M, Law J, Cvetkovic DD, Pampillo M, McColl L, Pape C, Di Guglielmo GM, Postovit LM, Babwah AV, Bhattacharya M. GPR54 (KISS1R) transactivates EGFR to promote breast cancer cell invasiveness. PLoS One 2011; 6:e21599. [PMID: 21738726 PMCID: PMC3125256 DOI: 10.1371/journal.pone.0021599] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 06/04/2011] [Indexed: 11/25/2022] Open
Abstract
Kisspeptins (Kp), peptide products of the Kisspeptin-1 (KISS1) gene are endogenous ligands for a G protein-coupled receptor 54 (GPR54). Previous findings have shown that KISS1 acts as a metastasis suppressor in numerous cancers in humans. However, recent studies have demonstrated that an increase in KISS1 and GPR54 expression in human breast tumors correlates with higher tumor grade and metastatic potential. At present, whether or not Kp signaling promotes breast cancer cell invasiveness, required for metastasis and the underlying mechanisms, is unknown. We have found that kisspeptin-10 (Kp-10), the most potent Kp, stimulates the invasion of human breast cancer MDA-MB-231 and Hs578T cells using Matrigel-coated Transwell chamber assays and induces the formation of invasive stellate structures in three-dimensional invasion assays. Furthermore, Kp-10 stimulated an increase in matrix metalloprotease (MMP)-9 activity. We also found that Kp-10 induced the transactivation of epidermal growth factor receptor (EGFR). Knockdown of the GPCR scaffolding protein, β-arrestin 2, inhibited Kp-10-induced EGFR transactivation as well as Kp-10 induced invasion of breast cancer cells via modulation of MMP-9 secretion and activity. Finally, we found that the two receptors associate with each other under basal conditions, and FRET analysis revealed that GPR54 interacts directly with EGFR. The stability of the receptor complex formation was increased upon treatment of cells by Kp-10. Taken together, our findings suggest a novel mechanism by which Kp signaling via GPR54 stimulates breast cancer cell invasiveness.
Collapse
Affiliation(s)
- Mateusz Zajac
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Jeffrey Law
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Dragana Donna Cvetkovic
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Macarena Pampillo
- The Children's Health Research Institute, The University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, The University of Western Ontario, London, Ontario, Canada
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, Ontario, Canada
| | - Lindsay McColl
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Cynthia Pape
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Gianni M. Di Guglielmo
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Lynne M. Postovit
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | - Andy V. Babwah
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
- The Children's Health Research Institute, The University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, The University of Western Ontario, London, Ontario, Canada
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, Ontario, Canada
| | - Moshmi Bhattacharya
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
3
|
Campos SM, Berlin ST, Parker LM, Chen WY, Bunnell CA, Atkinson T, Lee J, Matulonis U, Hirsch MS, Harris L, Krasner CN. Phase I trial of liposomal doxorubicin and ZD1839 in patients with refractory gynecological malignancies or metastatic breast cancer. Int J Clin Oncol 2010; 15:390-8. [PMID: 20405155 DOI: 10.1007/s10147-010-0073-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 03/08/2010] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pegylated liposomal doxorubicin has activity in both breast and ovarian cancer. Preclinical data noted that ZD1839 acts synergistically with chemotherapy. Given the lack of cross-resistance between these two agents, a phase I trial was initiated examining the safety and efficacy of the combination of liposomal doxorubicin and ZD1839 in patients with recurrent gynecologic or metastatic breast cancer. METHODS Dose-limiting toxicity (DLT) was defined within the first two cycles of treatment. Escalating doses of liposomal doxorubicin were administered every 4 weeks with ZD1839. Pharmacokinetic analysis and correlative studies were performed. RESULTS Thirty-five patients were enrolled in this study: six in each cohort. One DLT (febrile neutropenia) was observed in cohort 2. Dose level 3 was determined to be the maximum tolerated dose (MTD), and an additional ten patients were accrued. Serious adverse events (SAEs) included one patient with mental status changes believed secondary to disease progression and two central nervous system (CNS) bleeds believed to be unrelated to the combination of study agents. Toxicities were generally mild except for skin and gastrointestinal toxicity. No cardiac toxicity was observed. The best response to therapy included four partial responses and 20 patients with stable disease. CONCLUSIONS Liposomal doxorubicin with ZD1839 is an active regimen but is associated with increased skin toxicity in patients with advanced breast and gynecologic cancer.
Collapse
Affiliation(s)
- Susana M Campos
- Department of Gynecology Oncology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Yuan T, Wang Y, Zhao ZJ, Gu H. Protein-tyrosine phosphatase PTPN9 negatively regulates ErbB2 and epidermal growth factor receptor signaling in breast cancer cells. J Biol Chem 2010; 285:14861-14870. [PMID: 20335174 DOI: 10.1074/jbc.m109.099879] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ErbB family of the receptor protein-tyrosine kinase plays an important role in the progression of human cancers including breast cancer. Finding protein-tyrosine phosphatase (PTPs) that can specifically regulate the function of ErbB should help design novel therapies for treatment. By performing a small interfering RNA screen against 43 human PTPs, we find that knockdown of protein-tyrosine phosphatase PTPN9 significantly increases ErbB2 tyrosyl phosphorylation in the SKBR3 breast cancer cell line. In addition, knockdown of PTPN9 expression also enhances tyrosyl phosphorylation of the ErbB1/epidermal growth factor receptor (EGFR) in the MDA-MB-231 breast cancer cell line. Conversely, increasing expression of PTPN9 wild type (WT) inhibits tyrosyl phosphorylation of ErbB2 and EGFR. To test whether ErbB2 and EGFR are substrates of PTPN9, PTPN9 WT, and a substrate trapping mutant (PTPN9 DA) are overexpressed in SKBR3 and MDA-MB-231 cells. Compared with vector control, expression of PTPN9 WT significantly inhibits whereas expression of PTPN9 DA dramatically enhances tyrosyl phosphorylation of ErbB2 and EGFR, respectively. In contrast, expression of PTPN9 WT or DA mutant does not affect tyrosyl phosphorylation of ErbB3 and Shc. Importantly, coimmunoprecipitation and glutathione S-transferase fusion protein pulldown experiments show that tyrosol-phosphorylated ErbB2 or EGFR is preferentially associated with PTPN9 DA compared with PTPN9 WT, indicating that ErbB2 and EGFR are substrates of PTPN9. Furthermore, PTPN9 WT expression specifically impairs EGF-induced STAT3 and STAT5 activation, and inhibits the cell growth in soft agar. Last, PTPN9 WT expression also reduces invasion and MMP2 expression of MDA-MB-231 cells. Our data suggest PTPN9 as a negative regulator of breast cancer cells by targeting ErbB2 and EGFR and inhibiting STAT activation.
Collapse
Affiliation(s)
- Taichang Yuan
- Department of Pathology, University of Colorado, Denver, Health Science Center, Aurora, Colorado 80045
| | - Yongping Wang
- Department of Pathology, University of Colorado, Denver, Health Science Center, Aurora, Colorado 80045
| | - Zhizhuang J Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Haihua Gu
- Department of Pathology, University of Colorado, Denver, Health Science Center, Aurora, Colorado 80045.
| |
Collapse
|
5
|
Chen JQ, Russo J. ERalpha-negative and triple negative breast cancer: molecular features and potential therapeutic approaches. Biochim Biophys Acta Rev Cancer 2009; 1796:162-75. [PMID: 19527773 DOI: 10.1016/j.bbcan.2009.06.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 06/02/2009] [Accepted: 06/09/2009] [Indexed: 02/07/2023]
Abstract
Triple negative breast cancer (TNBC) is a type of aggressive breast cancer lacking the expression of estrogen receptors (ER), progesterone receptors (PR) and human epidermal growth factor receptor-2 (HER-2). TNBC patients account for approximately 15% of total breast cancer patients and are more prevalent among young African, African-American and Latino women patients. The currently available ER-targeted and Her-2-based therapies are not effective for treating TNBC. Recent studies have revealed a number of novel features of TNBC. In the present work, we comprehensively addressed these features and discussed potential therapeutic approaches based on these features for TNBC, with particular focus on: 1) the pathological features of TNBC/basal-like breast cancer; 2) E(2)/ERbeta-mediated signaling pathways; 3) G-protein coupling receptor-30/epithelial growth factor receptor (GPCR-30/EGFR) signaling pathway; 4) interactions of ERbeta with breast cancer 1/2 (BRCA1/2); 5) chemokine CXCL8 and related chemokines; 6) altered microRNA signatures and suppression of ERalpha expression/ERalpha-signaling by micro-RNAs; 7) altered expression of several pro-oncongenic and tumor suppressor proteins; and 8) genotoxic effects caused by oxidative estrogen metabolites. Gaining better insights into these molecular pathways in TNBC may lead to identification of novel biomarkers and targets for development of diagnostic and therapeutic approaches for prevention and treatment of TNBC.
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | |
Collapse
|
6
|
Kinch MS, Kohli M, Goldblatt M, Li WB. Function-first approaches to improve target identification in cancer. Future Oncol 2009; 5:617-23. [DOI: 10.2217/fon.09.42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Target discovery for cancer is undergoing a sort of revival with an increasing need for improved therapeutics. Likewise, the strategies to discover new and better therapeutic targets have come full circle, with greater emphasis placed upon targets that are functionally relevant to the disease process. In this article, we review the evolution of cancer target discovery and discuss random homozygous gene perturbation, an emerging technology that combines the practicality of screening for new targets by emphasizing function as the primary criterion, with cutting-edge advances in gene-based screening of all potential targets in a cell.
Collapse
Affiliation(s)
- Michael S Kinch
- Functional Genetics, Inc., 708 Quince Orchard Road, Gaithersburg, MD 20878, USA
| | - Manu Kohli
- Functional Genetics, Inc., 708 Quince Orchard Road, Gaithersburg, MD 20878, USA
| | - Michael Goldblatt
- Functional Genetics, Inc., 708 Quince Orchard Road, Gaithersburg, MD 20878, USA
| | - Wu-Bo Li
- Functional Genetics, Inc., 708 Quince Orchard Road, Gaithersburg, MD 20878, USA
| |
Collapse
|
7
|
McGovern UB, Stebbing J. Receptor-based predictors of response in breast cancer. Future Oncol 2009; 5:283-6. [DOI: 10.2217/fon.09.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Ursula B McGovern
- Imperial College Healthcare NHS Trust, Charing Cross Hospital, Department of Medical Oncology, 1st Floor, East Wing, Fulham Palace Road, London, UK
| | - Justin Stebbing
- Imperial College Healthcare NHS Trust, Charing Cross Hospital, Department of Medical Oncology, 1st Floor, East Wing, Fulham Palace Road, London, UK
| |
Collapse
|