1
|
Yang X, Wang X, Zhang X, Wu D, Cheng Y, Wang Y, Sha L, Zeng J, Kang H, Fan X, Huang L, Chen Y, Zhou Y, Zhang H. Full-length transcriptome assembly and RNA-Seq integration of diploid and tetraploid ryegrass to investigate differences in cd uptake and accumulation among ryegrass with different ploidy levels. BMC Genomics 2025; 26:128. [PMID: 39930350 PMCID: PMC11812225 DOI: 10.1186/s12864-025-11325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The accumulation of cadmium (Cd) in ryegrass (Lolium multiflorum Lamk.) as a widely used pasture plant poses a serious risk to food safety. This study aimed to investigate the differences in phenotypes, physiology, and expression of metal transporters between four ryegrass genotypes (diploid/tetraploid and Cd-tolerant/sensitive). RESULTS The diploid/Cd-sensitive genotypes were found to uptake, accumulate, and translocate more Cd compared to the tetraploid/Cd-tolerant genotypes. Cd with more soluble components facilitated the transfer of Cd from root to shoot in the sensitive genotypes. Tetraploid and Cd-tolerant Chuansi No.1 accumulated less Cd in shoots but higher ratio in root cell wall, making it a promising model for studying the mechanisms of plant resistance to Cd stress. The complex regulatory system and dilution effect contributed to the lower uptake and accumulation of Cd in tetraploid genotypes. Moreover, tetraploid genotypes exhibited higher expression of genes that promoted Cd efflux, which could contribute to their lower Cd accumulation. CONCLUSIONS Overall, this study sheds light on the physiological and transcriptional mechanisms of Cd uptake and accumulation by different polyploids, providing guidance for ryegrass breeding and soil improvement.
Collapse
Affiliation(s)
- Xunzhe Yang
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xia Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xuan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Dandan Wu
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yiran Cheng
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yi Wang
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Lina Sha
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Houyang Kang
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yinglong Chen
- UWA School of Agriculture and Environment, and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Yonghong Zhou
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| | - Haiqin Zhang
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
2
|
Santoro DF, Marconi G, Capomaccio S, Bocchini M, Anderson AW, Finotti A, Confalonieri M, Albertini E, Rosellini D. Polyploidization-driven transcriptomic dynamics in Medicago sativa neotetraploids: mRNA, smRNA and allele-specific gene expression. BMC PLANT BIOLOGY 2025; 25:108. [PMID: 39856624 PMCID: PMC11763150 DOI: 10.1186/s12870-025-06090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Whole genome duplication (WGD) is a powerful evolutionary mechanism in plants. Autopolyploids have been comparatively less studied than allopolyploids, with sexual autopolyploidization receiving even less attention. In this work, we studied the transcriptomes of neotetraploids (2n = 4x = 32) obtained by crossing two diploid (2n = 2x = 16) plants of Medicago sativa that produce a significant percentage of either 2n eggs or pollen. Diploid progeny from the same cross allowed us to separate the transcriptional outcomes of hybridization from those of WGD. This material can help to elucidate events at the base of the domestication of cultivated 4x alfalfa, the world's most important leguminous forage. Three 2x and three 4x progeny plants and 2x parental plants were used for this study. The RNA-seq data revealed that WGD did not dramatically affect the transcription of leaf protein-coding genes. The two parental genotypes did not contribute equally to the progeny transcriptomes, and genome-wide expression level dominance of the male parent was observed. A large majority of the genes whose expression level changed due to WGD presented increased expression, indicating that the 4x state requires the upregulation of approximately 2.66% of the protein-coding genes. Overall, we estimated that 3.63% of the protein-coding genes were transcriptionally affected by WGD and may contribute to the phenotypic novelty of the neotetraploid plants. Pathway analysis suggested that WGD could affect secondary metabolite biosynthesis, which in turn may influence forage quality. We found four times as many transcription factor genes among the polyploidization-affected genes than among those affected only by hybridization. Several of these belong to classes involved in stress response. Small RNA-seq revealed that very few miRNAs were significantly associated with WGD, but they target several hundred genes, and their role in the WGD response may be relevant. Integrated network analysis led to the identification of putative miRNA: mRNA interactions potentially involved in transcriptome reprogramming. Allele-specific expression analysis indicated that parent-of-origin bias was not a significant outcome of WGD, but we found that parentally biased RNA editing may be a significant source of variation in neopolyploids.
Collapse
Affiliation(s)
- D F Santoro
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, via Borgo XX giugno 74, Perugia, 06121, Italy
| | - G Marconi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, via Borgo XX giugno 74, Perugia, 06121, Italy
- Interuniversity Consortium for Biotechnology (CIB), Area Science Park, Padriciano 99, Trieste, 34149, Italy
| | - S Capomaccio
- Interuniversity Consortium for Biotechnology (CIB), Area Science Park, Padriciano 99, Trieste, 34149, Italy
- Department of Veterinary Medicine, University of Perugia, via S. Costanzo 4, Perugia, 06126, Italy
| | - M Bocchini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, via Borgo XX giugno 74, Perugia, 06121, Italy
| | - A W Anderson
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, via Borgo XX giugno 74, Perugia, 06121, Italy
| | - A Finotti
- Interuniversity Consortium for Biotechnology (CIB), Area Science Park, Padriciano 99, Trieste, 34149, Italy
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, via Fossato di Mortara 74, Ferrara, 44121, Italy
| | - M Confalonieri
- CREA Research Centre for Animal Production and Aquaculture (CREA-ZA), Viale Piacenza 29, Lodi, 26900, Italy
| | - E Albertini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, via Borgo XX giugno 74, Perugia, 06121, Italy
- Interuniversity Consortium for Biotechnology (CIB), Area Science Park, Padriciano 99, Trieste, 34149, Italy
| | - D Rosellini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, via Borgo XX giugno 74, Perugia, 06121, Italy.
- Interuniversity Consortium for Biotechnology (CIB), Area Science Park, Padriciano 99, Trieste, 34149, Italy.
| |
Collapse
|
3
|
Bortolin GS, Galviz YC, Pedroso CES, Souza GM. Root/shoot responses to drought and flooding of bahiagrass at reproductive stage depends on genotype ploidy. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:333-350. [PMID: 35190024 DOI: 10.1071/fp21208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Severe water stress is responsible for reducing plant growth and reproduction. This study aimed to evaluate the physiological and biochemical mechanisms associated with the tolerance of two genotipes of bahiagrass (Paspalum notatum Flügge) with different ploidy level to water deficit and flooding at the reproductive stage. Photosynthetic performance of diploid and tetraploid plants was not affected by flooding. In contrast, the water deficit decreased stomatal conductance, increased leaf temperature, and resulted in a decrease in the assimilation rate of the two genotypes. Despite the greater activities of antioxidant enzymes, flooded roots accumulated hydrogen peroxide and malondialdehyde. Roots of plants exposed to water deficit maintained an accumulation of biomass similar to that of control plants; however, with higher levels of total phenol content, total soluble sugars and proline. Diploid plants subjected to flooding had more inflorescences, however, the drought reduced the total number of filled florets per plant. Less starch degradation allows the maintenance and recovery of biomass in the tetraploid genotype, which allows it to maintain its reproductive performance even under drought conditions. Overall, the synthesis of osmoprotectants and activation of antioxidant machinery are important strategies in the tolerance of bahiagrass to water stress at the reproductive stage.
Collapse
Affiliation(s)
- Gabriel S Bortolin
- Department of Plant Sciences, Federal University of Pelotas, Capão do Leão, RS, Brazil
| | - Yutcelia C Galviz
- Department of Botany, Federal University of Pelotas, Capão do Leão, RS, Brazil
| | - Carlos E S Pedroso
- Department of Plant Sciences, Federal University of Pelotas, Capão do Leão, RS, Brazil
| | - Gustavo M Souza
- Department of Botany, Federal University of Pelotas, Capão do Leão, RS, Brazil
| |
Collapse
|
4
|
Tossi VE, Martínez Tosar LJ, Laino LE, Iannicelli J, Regalado JJ, Escandón AS, Baroli I, Causin HF, Pitta-Álvarez SI. Impact of polyploidy on plant tolerance to abiotic and biotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:869423. [PMID: 36072313 PMCID: PMC9441891 DOI: 10.3389/fpls.2022.869423] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/25/2022] [Indexed: 05/04/2023]
Abstract
Polyploidy, defined as the coexistence of three or more complete sets of chromosomes in an organism's cells, is considered as a pivotal moving force in the evolutionary history of vascular plants and has played a major role in the domestication of several crops. In the last decades, improved cultivars of economically important species have been developed artificially by inducing autopolyploidy with chemical agents. Studies on diverse species have shown that the anatomical and physiological changes generated by either natural or artificial polyploidization can increase tolerance to abiotic and biotic stresses as well as disease resistance, which may positively impact on plant growth and net production. The aim of this work is to review the current literature regarding the link between plant ploidy level and tolerance to abiotic and biotic stressors, with an emphasis on the physiological and molecular mechanisms responsible for these effects, as well as their impact on the growth and development of both natural and artificially generated polyploids, during exposure to adverse environmental conditions. We focused on the analysis of those types of stressors in which more progress has been made in the knowledge of the putative morpho-physiological and/or molecular mechanisms involved, revealing both the factors in common, as well as those that need to be addressed in future research.
Collapse
Affiliation(s)
- Vanesa E. Tossi
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Leandro J. Martínez Tosar
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Departamento de Biotecnología, Alimentos, Agro y Ambiental (DEBAL), Facultad de Ingeniería y Ciencias Exactas, Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina
| | - Leandro E. Laino
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Jesica Iannicelli
- Instituto Nacional de Tecnología, Agropecuaria (INTA), Instituto de Genética “Ewald A. Favret”, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental (IBBEA), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - José Javier Regalado
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Alejandro Salvio Escandón
- Instituto Nacional de Tecnología, Agropecuaria (INTA), Instituto de Genética “Ewald A. Favret”, Buenos Aires, Argentina
| | - Irene Baroli
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental (IBBEA), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Irene Baroli,
| | - Humberto Fabio Causin
- Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Humberto Fabio Causin,
| | - Sandra Irene Pitta-Álvarez
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- *Correspondence: Sandra Irene Pitta-Álvarez, ;
| |
Collapse
|
5
|
Zhang Z, Tan M, Zhang Y, Jia Y, Zhu S, Wang J, Zhao J, Liao Y, Xiang Z. Integrative analyses of targeted metabolome and transcriptome of Isatidis Radix autotetraploids highlighted key polyploidization-responsive regulators. BMC Genomics 2021; 22:670. [PMID: 34535080 PMCID: PMC8449450 DOI: 10.1186/s12864-021-07980-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Background Isatidis Radix, the root of Isatis indigotica Fort. (Chinese woad) can produce a variety of efficacious compound with medicinal properties. The tetraploid I. indigotica plants exhibit superior phenotypic traits, such as greater yield, higher bioactive compounds accumulation and enhanced stress tolerance. In this study, a comparative transcriptomic and metabolomic study on Isatidis Radix autotetraploid and its progenitor was performed. Results Through the targeted metabolic profiling, 283 metabolites were identified in Isatidis Radix, and 70 polyploidization-altered metabolites were obtained. Moreover, the production of lignans was significantly increased post polyploidization, which implied that polyploidization-modulated changes in lignan biosynthesis. Regarding the transcriptomic shift, 2065 differentially expressed genes (DEGs) were identified as being polyploidy-responsive genes, and the polyploidization-altered DEGs were enriched in phenylpropanoid biosynthesis and plant hormone signal transduction. The further integrative analysis of polyploidy-responsive metabolome and transcriptome showed that 1584 DEGs were highly correlated with the 70 polyploidization-altered metabolites, and the transcriptional factors TFs-lignans network highlighted 10 polyploidy-altered TFs and 17 fluctuated phenylpropanoid pathway compounds. Conclusions These results collectively indicated that polyploidization contributed to the high content of active compounds in autotetraploid roots, and the gene–lignan pathway network analysis highlighted polyploidy–responsive key functional genes and regulators. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07980-w.
Collapse
Affiliation(s)
- Zixuan Zhang
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Mingpu Tan
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yingying Zhang
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yue Jia
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Shuxian Zhu
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jiang Wang
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jiajing Zhao
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yueyue Liao
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zengxu Xiang
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
6
|
Chen D, Chen S, Zhao C, Yan J, Ma Z, Zhao X, Wang Z, Wang X, Wang H. Screening and functional identification of antioxidant microRNA-size sRNAs from Spirulina platensis using high-throughput sequencing. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:973-983. [PMID: 34112312 DOI: 10.1071/fp20405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
MiRNA-size small RNAs, abbreviated as sRNAs, are increasingly being discovered as research progresses and omics technologies development in prokaryotes. However, there is a paucity of data concerning whether or not sRNAs exist in cyanobacteria and regulate the resistance to oxidative stress. In this investigation, small RNA libraries were constructed from the control, 50-nM and 100-nM H2O2 treatments of Spirulina platensis. By high-throughput sequencing, 23 candidate sRNAs showed significantly differential expression under oxidative stress, among which eight sRNAs were identified with the similar expression patterns as the sequencing results by real-time qPCR. By nucleic acid hybridisation, the corresponding expression changes also demonstrated that sequencing results of sRNAs were feasible and credible. By bioinformatics prediction and structure identification, 43 target genes were predicted for 8 sRNAs in plant miRNA database, among which 29 were annotated into the genome and related metabolic pathways of S. platensis. By COG functional classification and KEGG pathway analysis, 31 target genes were predicted to be directly or indirectly involved in the defence mechanism of H2O2 stress. Thirteen target genes displayed reversely changing patterns compared with those of their sRNAs under H2O2 treatment. These findings provide compelling evidence that these sRNAs in S. platensis play a crucial role in oxidative stress responses, and thus provide a theoretical reference for improving the stress-triggering physiological regulation.
Collapse
Affiliation(s)
- Dechao Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215004, China
| | - Shuya Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215004, China
| | - Chenxi Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215004, China
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215004, China
| | - Zelong Ma
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215004, China
| | - Xiaokai Zhao
- School of Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhenfeng Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215004, China; and School of Life Science, Wenzhou Medical University, Wenzhou 325035, China; and Corresponding authors. ;
| | - Xuedong Wang
- School of Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215004, China; and Corresponding authors. ;
| |
Collapse
|
7
|
Huang T, Gu W, Liu E, Shi X, Wang B, Wu W, Dong F, Xu G. Comprehensive analysis of miRNA-mRNA/lncRNA during gonadal development of triploid female rainbow trout (Oncorhynchus mykiss). Genomics 2021; 113:3533-3543. [PMID: 34450291 DOI: 10.1016/j.ygeno.2021.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 07/28/2021] [Accepted: 08/22/2021] [Indexed: 01/19/2023]
Abstract
Chromosomal ploidy manipulation is one of the means to create excellent germplasm. Triploid fish could provide an ideal sterile model for searching of a underlying mechanism of abnormality in meiosis. The complete understanding of the coding and noncoding RNAs regulating sterility caused by meiosis abnormality is still not well understood. By high-throughput sequencing, we compared the expression profiles of gonadal mRNA, long non-coding RNA (lncRNA), and microRNA (miRNA) at three different developmental stages between the diploid (XX) and triploid (XXX) female rainbow trout. These stages were gonads before differentiation (65 days post fertilisation, dpf), at the beginning of morphological differences (180 dpf) and showing clear difference between diploids and triploids (600 dpf), respectively. A majority of differentially expressed (DE) RNAs were identified, and 22 DE mRNAs related to oocyte meiosis and homologous recombination were characterized. The predicted miRNA-mRNA/lncRNA networks of 3 developmental stages were constructed based on the target pairs of DE lncRNA-miRNA and DE mRNA-miRNA. According to the networks, meiosis-related gene of ccne1 was targeted by dre-miR-15a-5p_R + 1, and 6 targeted DE lncRNAs were identified. Also, qRT-PCR was performed to validate the credibility of the network. Overall, this study explored the potential interplay between coding and noncoding RNAs during the gonadal development of polyploid fish. The mRNA, lncRNA and miRNA screened in this study may be helpful to identify the functional elements regulating fertility of rainbow trout, which may provide reference for character improvement in aquaculture.
Collapse
Affiliation(s)
- Tianqing Huang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Wei Gu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Enhui Liu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xiulan Shi
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Bingqian Wang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Wenhua Wu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Fulin Dong
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Gefeng Xu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.
| |
Collapse
|
8
|
Bian W, Liu X, Zhang Z, Zhang H. Transcriptome analysis of diploid and triploid Populus tomentosa. PeerJ 2020; 8:e10204. [PMID: 33194408 PMCID: PMC7602689 DOI: 10.7717/peerj.10204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022] Open
Abstract
Triploid Chinese white poplar (Populus tomentosa Carr., Salicaceae) has stronger advantages in growth and better stress resistance and wood quality than diploid P. tomentosa. Using transcriptome sequencing technology to identify candidate transcriptome-based markers for growth vigor in young tree tissue is of great significance for the breeding of P. tomentosa varieties in the future. In this study, the cuttings of diploid and triploid P. tomentosa were used as plant materials, transcriptome sequencing was carried out, and their tissue culture materials were used for RT-qPCR verification of the expression of genes. The results showed that 12,240 differentially expressed genes in diploid and triploid P. tomentosa transcripts were annotated and enriched into 135 metabolic pathways. The top six pathways that enriched the most significantly different genes were plant-pathogen interaction, phenylpropanoid biosynthesis, MAPK signalling pathway-plant, ascorbate and aldarate metabolism, diterpenoid biosynthesis, and the betalain biosynthesis pathway. Ten growth-related genes were selected from pathways of plant hormone signal transduction and carbon fixation in photosynthetic organisms for RT-qPCR verification. The expression levels of MDH and CYCD3 in tissue-cultured and greenhouse planted triploid P. tomentosa were higher than those in tissue-cultured diploid P. tomentosa, which was consist ent with the TMM values calculated by transcriptome.
Collapse
Affiliation(s)
- Wen Bian
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China
| | - Xiaozhen Liu
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan, China
| | - Zhiming Zhang
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan, China
| | - Hanyao Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China
| |
Collapse
|
9
|
Scarrow M, Wang Y, Sun G. Molecular regulatory mechanisms underlying the adaptability of polyploid plants. Biol Rev Camb Philos Soc 2020; 96:394-407. [PMID: 33098261 DOI: 10.1111/brv.12661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
Polyploidization influences the genetic composition and gene expression of an organism. This multi-level genetic change allows the formation of new regulatory pathways leading to increased adaptability. Although both forms of polyploidization provide advantages, autopolyploids were long thought to have little impact on plant divergence compared to allopolyploids due to their formation through genome duplication only, rather than in combination with hybridization. Recent advances have begun to clarify the molecular regulatory mechanisms such as microRNAs, alternative splicing, RNA-binding proteins, histone modifications, chromatin remodelling, DNA methylation, and N6 -methyladenosine (m6A) RNA methylation underlying the evolutionary success of polyploids. Such research is expanding our understanding of the evolutionary adaptability of polyploids and the regulatory pathways that allow adaptive plasticity in a variety of plant species. Herein we review the roles of individual molecular regulatory mechanisms and their potential synergistic pathways underlying plant evolution and adaptation. Notably, increasing interest in m6A methylation has provided a new component in potential mechanistic coordination that is still predominantly unexplored. Future research should attempt to identify and functionally characterize the evolutionary impact of both individual and synergistic pathways in polyploid plant species.
Collapse
Affiliation(s)
- Margaret Scarrow
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Yiling Wang
- College of Life Science, Shanxi Normal University, Linfen, Shanxi, 041000, China
| | - Genlou Sun
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| |
Collapse
|
10
|
Ulum FB, Costa Castro C, Hörandl E. Ploidy-Dependent Effects of Light Stress on the Mode of Reproduction in the Ranunculus auricomus Complex (Ranunculaceae). FRONTIERS IN PLANT SCIENCE 2020; 11:104. [PMID: 32153611 PMCID: PMC7044147 DOI: 10.3389/fpls.2020.00104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/23/2020] [Indexed: 05/04/2023]
Abstract
Polyploidy in angiosperms is an influential factor to trigger apomixis, the reproduction of asexual seeds. Apomixis is usually facultative, which means that both sexual and apomictic seeds can be formed by the same plant. Environmental abiotic stress, e.g. light stress, can change the frequency of apomixis. Previous work suggested effects of stress treatments on meiosis and megasporogenesis. We hypothesized that polyploidy would alter the stress response and hence reproductive phenotypes of different cytotypes. The main aims of this research were to explore with prolonged photoperiods, whether polyploidy alters proportions of sexual ovule and sexual seed formation under light stress conditions. We used three facultative apomictic, pseudogamous cytotypes of the Ranunculus auricomus complex (diploid, tetraploid, and hexaploid). Stress treatments were applied by extended light periods (16.5 h) and control (10 h) in climate growth chambers. Proportions of apomeiotic vs. meiotic development in the ovule were evaluated with clearing methods, and mode of seed formation was examined by single seed flow cytometric seed screening (ssFCSS). We further studied pollen stainability to understand effects of pollen quality on seed formation. Results revealed that under extended photoperiod, all cytotypes produced significantly more sexual ovules than in the control, with strongest effects on diploids. The stress treatment affected neither the frequency of seed set nor the proportion of sexual seeds nor pollen quality. Successful seed formation appears to be dependent on balanced maternal: paternal genome contributions. Diploid cytotypes had mostly sexual seed formation, while polyploid cytotypes formed predominantly apomictic seeds. Pollen quality was in hexaploids better than in diploids and tetraploids. These findings confirm our hypothesis that megasporogenesis is triggered by light stress treatments. Comparisons of cytotypes support the hypothesis that ovule development in polyploid plants is less sensitive to prolonged photoperiods and responds to a lesser extent with sexual ovule formation. Polyploids may better buffer environmental stress, which releases the potential for aposporous ovule development from somatic cells, and may facilitate the establishment of apomictic seed formation.
Collapse
Affiliation(s)
- Fuad Bahrul Ulum
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
- Biology Department, Faculty of Mathematics and Sciences, Jember University, Jember, Indonesia
| | - Camila Costa Castro
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
- *Correspondence: Elvira Hörandl,
| |
Collapse
|