1
|
Schirmer EC. Nuclear organization and dynamics: The final Frontier for understanding genome regulation. Front Cell Dev Biol 2022; 10:951875. [PMID: 35923850 PMCID: PMC9340541 DOI: 10.3389/fcell.2022.951875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
|
2
|
Pommier Y, Pilon A, Bajaj K, Mazumder A, Neamati N. HIV-1 Integrase as a Target for Antiviral Drugs. ACTA ACUST UNITED AC 2017. [DOI: 10.1177/095632029700800601] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Y Pommier
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Aa Pilon
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - K Bajaj
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - A Mazumder
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - N Neamati
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| |
Collapse
|
3
|
Savarino A. A historical sketch of the discovery and development of HIV-1 integrase inhibitors. Expert Opin Investig Drugs 2006; 15:1507-22. [PMID: 17107277 DOI: 10.1517/13543784.15.12.1507] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The long process of HIV-1 integrase inhibitor discovery and development can be attributed to both the complexity of HIV-1 integration and poor 'integration' of these researches into mainstream investigations on antiretroviral therapy in the mid-1990s. Of note, some fungal extracts investigated during this period contain the beta-hydroxyketo group, later recognised to be a key structural requirement for keto-enol acids (also referred to as diketo acids) and other integrase inhibitors. This review reconstructs (in the general context of the history of AIDS research) the principal steps that led to the integrase inhibitors currently in clinical trials, and discusses possible future directions.
Collapse
Affiliation(s)
- Andrea Savarino
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità Viale Regina Elena, 299. 00161- Rome, Italy.
| |
Collapse
|
4
|
Abstract
Hydrogen-bonded base pairs are an important determinant of nucleic acid structure and function. However, other interactions such as base-base stacking, base-backbone, and backbone-backbone interactions as well as effects exerted by the solvent and by metal or NH(4)(+) ions also have to be taken into account. In addition, hydrogen-bonded base complexes involving more than two bases can occur. With the rapidly increasing number and structural diversity of nucleic acid structures known at atomic detail higher-order hydrogen-bonded base complexes, base polyads, have attracted much interest. This review provides an overview on the occurrence of base polyads in nucleic acid structures and describes computational studies on these nucleic acid building blocks.
Collapse
Affiliation(s)
- J Sühnel
- Biocomputing Group, Institut für Molekulare Biotechnologie, Postfach 100813, D-07708 Jena, Germany
| |
Collapse
|
5
|
Maksimenko AV, Volkov EM, Bertrand JR, Porumb H, Malvy C, Shabarova ZA, Gottikh MB. Targeting of single-stranded DNA and RNA containing adjacent pyrimidine and purine tracts by triple helix formation with circular and clamp oligonucleotides. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3592-603. [PMID: 10848976 DOI: 10.1046/j.1432-1327.2000.01388.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this work was to construct an anti-messenger targeted to the pim-1 oncogene transcript, based on circular or clamp oligodeoxyribonucleotides. The formation of bimolecular triplexes by clamp or circular oligonucleotides was investigated using single-stranded targets of both DNA (5'-CCCTCCTTTGAAGAA-3') and RNA type (5'-CCCUCCUUUGAAGAA-3'). The third, 'Hoogsteen' strand of the triplex was represented by G,T-rich sequences. The secondary structures of the complexes were determined by thermal denaturation, circular dichroism and gel mobility shift experiments and shown to depend on the nature of the target strand. With DNA as target, the sequence of a clamp (or circular) oligonucleotide that formed the triple helix was 3'-GGGAGGAAACTTCTTTT-TTGTTGTTT-TT-GGTGGG-5', where the first TT dinucleotide (in italics) is a linker and the second TT (bold) represents the bridge through which the 'Hoogsteen' strand switches from one strand of the Watson-Crick duplex to the other, once the duplex is formed by the corresponding portion of the anti-messenger (underlined). The portion of the 'Hoogsteen' sequence of the triplex between the two TT dinucleotides binds to the 3' extremity of the target strand and runs parallel to it. The portion situated at the 5' end of the oligonucleotide switches to the purine tract of the complementary strand of the duplex and is antiparallel to it. In contrast, with RNA as target, for a branched clamp oligonucleotide that formed a triple helix over its entire length (5'-TTCTTCAAAGGAGGG-3' 3'-GGGTGGTTT-T-GTTGTT-5') the portion of the 'Hoogsteen' sequence that bound to the 3' extremity of the target strand had to be antiparallel to it.
Collapse
Affiliation(s)
- A V Maksimenko
- Belozersky Research Institute of Physico-Chemical Biology and Department of Chemistry, Moscow State University, Russia
| | | | | | | | | | | | | |
Collapse
|
6
|
Brodin P, Pinskaya M, Volkov E, Romanova E, Leh H, Auclair C, Mouscadet JF, Gottikh M. Branched oligonucleotide-intercalator conjugate forming a parallel stranded structure inhibits HIV-1 integrase. FEBS Lett 1999; 460:270-4. [PMID: 10544248 DOI: 10.1016/s0014-5793(99)01350-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Integration of a DNA copy of the HIV-1 genome into chromosomal DNA of infected cells is a key step of viral replication. Integration is carried out by integrase, a viral protein which binds to both ends of viral DNA and catalyses reactions of the 3'-end processing and strand transfer. A 3'-3' branched oligonucleotide functionalised by the intercalator oxazolopyridocarbazole at each 5'-end was found to inhibit integration in vitro. We show that both a specific (G,A) sequence and the OPC intercalating agent contribute to the capability of the branched oligonucleotide to form a parallel stranded structure responsible for the inhibition.
Collapse
Affiliation(s)
- P Brodin
- CNRS-UMR 8532, Institut Gustave Roussy, 39 rue C., Desmoulins, France
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Debin A, Laboulais C, Ouali M, Malvy C, Le Bret M, Svinarchuk F. Stability of G,A triple helices. Nucleic Acids Res 1999; 27:2699-707. [PMID: 10373587 PMCID: PMC148479 DOI: 10.1093/nar/27.13.2699] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work we selected double-stranded DNA sequences capable of forming stable triplexes at 20 or 50 degrees C with corresponding 13mer purine oligonucleotides. This selection was obtained by a double aptamer approach where both the starting sequences of the oligonucleotides and the target DNA duplex were random. The results of selection were confirmed by a cold exchange method and the influence of the position of a 'mismatch' on the stability of the triplex was documented in several cases. The selected sequences obey two rules: (i) they have a high G content; (ii) for a given G content the stability of the resulting triplex is higher if the G residues lie in stretches. The computer simulation of the Mg2+, Na+and Cl-environment around three triplexes by a density scaled Monte Carlo method provides an interpretation of the experimental observations. The Mg2+cations are statistically close to the G N7 and relatively far from the A N7. The presence of an A repels the Mg2+from adjacent G residues. Therefore, the triplexes are stabilized when the Mg2+can form a continuous spine on G N7.
Collapse
Affiliation(s)
- A Debin
- CNRS UMR 8532, Institut Gustave-Roussy, 94805 Villejuif, France
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Integration of the viral DNA into a host cell chromosome is an essential step for HIV replication and maintenance of persistent infection. Two viral factors are essential for integration: the viral DNA termini (the att sites) and IN. Accruing knowledge of the IN structure, catalytic mechanisms, and interactions with other proteins can be used to design strategies to block integration. A large number of inhibitors have been identified that can be used as leads for the development of potent and selective anti-IN drugs with antiviral activity.
Collapse
Affiliation(s)
- Y Pommier
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland 20892-4255, USA
| | | |
Collapse
|
9
|
Gottikh MB, Volkov EM, Romanova EA, Oretskaya TS, Shabarova ZA. Synthesis of oligonucleotide-intercalator conjugates capable to inhibit HIV-1 DNA integration. NUCLEOSIDES & NUCLEOTIDES 1999; 18:1645-6. [PMID: 10474239 DOI: 10.1080/07328319908044809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This investigation is devoted to design of short "switch" oligonucleotides mono- or bi-functionnalized with intercalating agents capable to form a stable triplex with HIV integrase-cognate sequences and inhibit selectively HIV integration. Methods of intercalator incorporation at 5'- and/or 3'-terminal positions or one of the pyrimidine heterocyclic bases are developed.
Collapse
Affiliation(s)
- M B Gottikh
- A.N. Belozersky Institute of Physical Chemical Biology, Lomonosov Moscow State University, Russia
| | | | | | | | | |
Collapse
|
10
|
Brodin P, Gottikh M, Auclair C, Mouscadet JF. Inhibition of HIV-1 integration by mono- & bi-functionalized triple helix forming oligonucleotides. NUCLEOSIDES & NUCLEOTIDES 1999; 18:1717-8. [PMID: 10474254 DOI: 10.1080/07328319908044831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
HIV-1 DNA integration is carried out by integrase, a viral protein which binds to specific sequences located on both extremities of the HIV-1 DNA LTR. Inhibition of integration was observed with submicromolar concentrations of mono- or bifunctionalized 11-mer oligonucleotide-intercalators, which were designed to form an alternate strand triple helix with the U5 LTR end containing two adjacent purine tracts on opposite strands 5'-GGAAAATCTCT-3'/3'-CCTTTTAGAGA-5'.
Collapse
Affiliation(s)
- P Brodin
- CNRS-UMR 1772, Institut Gustave Roussy, Villejuif, France
| | | | | | | |
Collapse
|
11
|
Abstract
A triple helix, formed by a 13 nucleotide (nt) all-purine oligonucleotide, containing six contiguous guanines, oriented parallel to a homopurine strand present in the polypurine tract of Friend leukemia virus, was obtained in 0.1 M LiCl. Its dissociation constant at 25 degrees C, given by electrophoretic titration, of the order of 50 nM, is at least ten times lower than that of the corresponding antiparallel triplex formed on the same target. At 4 degrees C, the parallel orientation of the homopurine strands is favored to the point that the guanine block of 6 nt, present in the 'antiparallel' oligonucleotide, attaches in a parallel fashion to the corresponding block in the target strand, to generate a partial, parallel triplex, that coexists with the antiparallel one.
Collapse
Affiliation(s)
- H Porumb
- Laboratoire de Spectroscopie Biomoléculaire, UPRESA CNRS 7031, Université Paris-Nord, Bobigny, France.
| | | | | |
Collapse
|
12
|
de Bizemont T, Sun JS, Garestier T, Hélène C. New junction models for alternate-strand triple-helix formation. CHEMISTRY & BIOLOGY 1998; 5:755-62. [PMID: 9862797 DOI: 10.1016/s1074-5521(98)90667-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND [corrected] Oligonucleotide-directed triple-helix (triplex) formation can interfere with gene expression but only long tracts of oligopyrimidine*oligopurine sequences can be targeted. Attempts have been made to recognize short oligopurine sequences alternating on the two strands of double-stranded DNA by the covalent linkage of two triplex-forming oligonucleotides. Here we focus on the rational optimization of such an alternate-strand triplex formation on a DNA duplex containing a 5'-GpT-3'/3'-CpA-5' or a 5'-TpG-3'/3'-ApC-5' step by combination of (G,T)- and (G,A)-containing oligonucleotides that bind to the oligopurine strands in opposite orientations. RESULTS The deletion of one nucleotide in the reverse Hoogsteen region of the oligonucleotide provides the best binding at the 5'GpT-3'/3'-CpA-5' step, whereas the addition of two cytosines as a linker between the two oligonucleotides is the best strategy to cross a 5'-TpG-3'/3'-ApC-5' step. Energy minimization and experimental data suggest that these two cytosines are involved in the formation of two novel base quadruplets. CONCLUSIONS These data provide a rational basis for the design of oligonucleotides capable of binding to oligopurine sequences that alternate on the two strands of double-stranded DNA with a 5'-GpT-3'/3'-CpA-5' or a 5'-TpG-3'/3'-ApC-5' step at the junction.
Collapse
Affiliation(s)
- T de Bizemont
- Laboratoire de Biophysique INSERM U 201 CNRS URA 481 Muséum National d'Histoire Naturelle 43 rue Cuvier, 75231 Paris Cedex 05, France
| | | | | | | |
Collapse
|
13
|
Marchand C, Sun JS, Bailly C, Waring MJ, Garestier T, Hélène C. Optimization of alternate-strand triple helix formation at the 5'CpG3' and 5'GpC3' junction steps. Biochemistry 1998; 37:13322-9. [PMID: 9748340 DOI: 10.1021/bi980618+] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oligonucleotide-directed triple helix formation normally requires a long tract of oligopyrimidine.oligopurine sequence. This limitation can be partially overcome by alternate-strand triple helix (or switch triple helix) formation which enables recognition of alternating oligopurine/oligopyrimidine sequences. The present work is devoted to the optimization of switch triple helix formation at the 5'CpG3' and 5'GpC3' junction steps by combination of base triplets in Hoogsteen and in reverse Hoogsteen configurations. Rational design by molecular mechanics was first carried out to study the geometrical constraints at different junction steps and to propose a "switch code" which would optimize the interactions at junctions. These predictions were further checked and validated experimentally by gel retardation and DNase I footprinting assays. It was shown that the choice of an appropriate linker nucleotide in the switching third strand plays an important role in the interaction between oligonucleotides and alternating oligopurine/oligopyrimidine target sequences at different junctions: (i) the addition of a cytosine at the junction level in the oligonucleotide optimizes the crossover at the 5'CpG3' junction, whereas (ii) the best crossover at the 5'GpC3' junction step is achieved without any additional nucleotide. These results provide a useful guideline to extend double-stranded DNA sequence recognition by switch triple helix formation.
Collapse
Affiliation(s)
- C Marchand
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, INSERM U201, CNRS URA481, Paris, France
| | | | | | | | | | | |
Collapse
|
14
|
Ouali M, Gousset H, Geinguenaud F, Liquier J, Gabarro-Arpa J, Le Bret M, Taillandier E. Hydration of the dTn.dAn x dTn parallel triple helix: a Fourier transform infrared and gravimetric study correlated with molecular dynamics simulations. Nucleic Acids Res 1997; 25:4816-24. [PMID: 9365262 PMCID: PMC147119 DOI: 10.1093/nar/25.23.4816] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We present a comparative analysis of the water organization around the dTn.dAn x dTn triple helix and the Watson-Crick double helix dTn.dAn respectively by means of gravimetric measurements, infrared spectroscopy and molecular dynamics simulations. The hydration per nucleotide determined by gravimetric and spectroscopic methods correlated with the molecular dynamics simulations shows that at high relative humidity (98% RH) the triple helix is less solvated than the duplex (17 +/- 2 water molecules per nucleotide instead of 21 +/-1). The experimental desorption curves are different for both structures and indicate that below 81% RH the triplex becomes more hydrated than the duplex. At this RH the FTIR spectra show the emergence of N-type sugars in the adenosine strand of the triplex. When the third strand is bound in the major groove of the Watson-Crick duplex molecular dynamics simulations show the formation of a spine of water molecules between the two thymidine strands.
Collapse
Affiliation(s)
- M Ouali
- Laboratoire CSSB, URA CNRS 1430, UFR Santé Médecine et Biologie Humaine, Université Paris XIII, 74 rue Marcel Cachin, 93017 Bobigny, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Lavrovsky Y, Chen S, Roy AK. Therapeutic potential and mechanism of action of oligonucleotides and ribozymes. BIOCHEMICAL AND MOLECULAR MEDICINE 1997; 62:11-22. [PMID: 9367793 DOI: 10.1006/bmme.1997.2631] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Specific inactivation of gene expression is an attractive approach for rational drug design to combat degenerative diseases and infectious agents. Oligonucleotide-directed triple-helix formation at cis-acting elements of gene promoters, short oligonucleotides containing base sequences that are complementary to the messenger RNA (antisense oligos), and RNA enzymes (ribozymes) that specifically cleave messenger RNA molecules are currently being used both as experimental tools and as therapeutic agents. Mechanisms of action of various oligonucleotide-based drugs, recent developments in the drug-delivery approaches, and future potentials are discussed in this review.
Collapse
Affiliation(s)
- Y Lavrovsky
- Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78284-7762, USA
| | | | | |
Collapse
|