1
|
Vongsutilers V, Gannett PM. C8-Guanine modifications: effect on Z-DNA formation and its role in cancer. Org Biomol Chem 2018. [DOI: 10.1039/c8ob00030a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Participation of Z DNA in normal and disease related biological processes.
Collapse
Affiliation(s)
- V. Vongsutilers
- Department of Food and Pharmaceutical Chemistry
- Faculty of Pharmaceutical Sciences
- Chulalongkorn University
- Thailand
| | - P. M. Gannett
- College of Pharmacy
- Nova Southeastern University
- Ft. Lauderdale
- USA
| |
Collapse
|
2
|
Toxicology of DNA Adducts Formed Upon Human Exposure to Carcinogens. ADVANCES IN MOLECULAR TOXICOLOGY 2016. [DOI: 10.1016/b978-0-12-804700-2.00007-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Train BC, Bilgesü SA, Despeaux EC, Vongsutilers V, Gannett PM. Single C8-Arylguanine modifications render oligonucleotides in the Z-DNA conformation under physiological conditions. Chem Res Toxicol 2014; 27:1176-86. [PMID: 24921151 DOI: 10.1021/tx5000798] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Z-DNA is the only DNA conformation that has a left-handed helical twist. Although Z-DNA has been implicated in both carcinogenesis and mutagenesis, its specific biological role remains uncertain. We have demonstrated that the formation of C8-arylguanine DNA adducts, derived from arylhydrazines, shifts the B/Z-DNA equilibrium toward the Z-DNA conformation in d(CG)5 sequences. However, our previous work examined the effect of two adducts in the duplex, and it was unclear whether the two base modifications were working together to cause the equilibrium shift toward the Z-DNA conformation. Here we report the synthesis and characterization of a hairpin oligonucleotide sequence (d(CG)5T4(CG)5) containing only one C8-arylguanine modified base. The unmodified hairpin and the previously studied unmodified double-stranded oligonucleotide were conformationally similar, and each required ∼3 M NaCl to yield a B-/Z-DNA ratio of 1:1. The introduction of a single C8-arylguanine modification significantly reduced the NaCl concentration needed to produce a 1:1 B-/Z-DNA ratio in the hairpin. Further, the addition of MgCl2 and spermine to the C8-arylguanine-modified hairpin shifts the B/Z-DNA equilibrium such that the Z form predominated under physiological conditions. NMR and molecular modeling indicated the conformational effects produced by the C8-arylguanine modification occurred locally at the site of modification while CD data demonstrated that the C8-arylguanine-modified base destabilized the B form. Additionally, our data show that adopting the Z-DNA conformation is preferred over denaturation to the single-stranded form. Finally, the conformational effects of the C8-arylguanine modifications were not additive and the introduction of any such modifications drive Z-DNA formation under physiological conditions, which may provide a novel carcinogenesis mechanism where DNA adducts confer their carcinogenicity through a Z-DNA-mediated mechanism.
Collapse
Affiliation(s)
- Brian C Train
- West Virginia University , Basic Pharmaceutical Sciences, P.O. Box 9530, Morgantown, West Virginia 26506, United States
| | | | | | | | | |
Collapse
|
4
|
C8-linked bulky guanosine DNA adducts: experimental and computational insights into adduct conformational preferences and resulting mutagenicity. Future Med Chem 2012; 4:1981-2007. [PMID: 23088278 DOI: 10.4155/fmc.12.138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bulky DNA adducts are formed through the covalent attachment of aryl groups to the DNA nucleobases. Many of these adducts are known to possess conformational heterogeneity, which is responsible for the variety of mutagenic outcomes associated with these lesions. The present contribution reviews several conformational and mutagenic themes that are prevalent among the DNA adducts formed at the C8-site of the guanine nucleobase. The most important conclusions obtained (to date) from experiments are summarized including the anti/syn conformational preference of the adducts, their potential to inflict DNA mutations and mismatch stabilization, and their interactions with DNA polymerases and repair enzymes. Additionally, the unique role that computer calculations can play in understanding the structural properties of these adducts are highlighted.
Collapse
|
5
|
Millen AL, Kamenz BL, Leavens FMV, Manderville RA, Wetmore SD. Conformational flexibility of C8-phenoxylguanine adducts in deoxydinucleoside monophosphates. J Phys Chem B 2011; 115:12993-3002. [PMID: 21942470 DOI: 10.1021/jp2057332] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
M06-2X/6-31G(d,p) is used to calculate the structure of all natural deoxydinucleoside monophosphates with G in the 5' or 3' position, the anti or syn conformation, and each natural (A, C, G, T) base in the corresponding flanking position. When the ortho or para C8-phenoxyl-2'-deoxyguanosine (C8-phenoxyl-dG) adduct replaces G in each model, there is little change in the relative base-base orientation or backbone conformation. However, the orientation of the C8-phenoxyl group can be characterized according to the position (5' versus 3'), conformation (anti versus syn), and isomer (ortho versus para) of damage. Although the degree of coplanarity between the phenoxyl ring and G base in the ortho adduct is highly affected by the sequence since the hydroxyl group can interact with neighboring bases, the para adduct generally does not exhibit discrete interactions with flanking bases. For both adducts, steric clashes between the phenoxyl group and the backbone or flanking base destabilize the anti conformation preferred by the natural nucleotide and thereby result in a clear preference for the syn conformation regardless of the sequence or position. This contrasts the conclusions drawn from smaller (nucleoside, nucleotide) models previously used in the literature, which stresses the importance of using models that address the steric constraints present due to the surrounding environment. Since replication errors for other C8-dG bulky adducts have been linked to a preference for the syn conformation, our findings provide insight into the possible mutagenicity of phenolic adducts.
Collapse
Affiliation(s)
- Andrea L Millen
- Department of Chemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | | | | | | |
Collapse
|
6
|
Omumi A, Millen AL, Wetmore SD, Manderville RA. Fluorescent properties and conformational preferences of C-linked phenolic-DNA adducts. Chem Res Toxicol 2011; 24:1694-709. [PMID: 21905681 DOI: 10.1021/tx200247f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phenolic toxins and mutagenic diazoquinones generate C-linked adducts at the C8 site of 2'-deoxyguanosine (dG) through the intermediacy of radical species. We have previously reported the site-specific incorporation of these adducts into oligonucleotides using a postsynthetic palladium-catalyzed cross-coupling strategy [Omumi (2011 ) J. Am. Chem. Soc. 133 , 42 - 50 ]. We report here the structural impact of these lesions within two decanucleotide sequences containing either 5'- and 3'-flanking pyrimidines or purines. In the complementary strands, the base opposite (N) the C-linked adduct was varied to determine the possibility of mismatch stabilization by the modified nucleobases. The resulting adducted duplex structures were characterized using UV thermal denaturation studies, circular dichroism, fluorescence spectroscopy, and molecular dynamics (MD) simulations. The experimental data showed the C-linked adducts to destabilize the duplex when base paired with its normal partner C but to increase duplex stability within a G:G mismatch. The stabilization within the G:G mismatch was sequence dependent, with flanking purine bases playing a key role in the stabilizing influence of the adduct. MD simulations showed no large structural changes to the B form double helix, regardless of the (anti/syn) adduct preference. Consideration of H-bonding and stacking interactions derived from the MD simulations together with the thermal melting data and changes in fluorescent emission of the adducts upon hybridization to the complementary strands implied that the C-linked phenolic adducts preferentially adopt the syn-conformation within both duplexes regardless of the opposite base N. Given that biological outcome in terms of mutagenicity appears to be strongly correlated to the conformational preference of the corresponding N-linked C8-dG adducts, the potential biological implications of phenolic C-linked adducts are discussed.
Collapse
Affiliation(s)
- Alireza Omumi
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
7
|
The conformational effect of para-substituted C8-arylguanine adducts on the B/Z-DNA equilibrium. Biophys Chem 2010; 154:41-8. [PMID: 21255902 DOI: 10.1016/j.bpc.2010.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 12/19/2010] [Accepted: 12/19/2010] [Indexed: 11/20/2022]
Abstract
The B form of DNA exists in equilibrium with the Z form and is mainly affected by sequence, electrostatic interactions, and steric effects. C8-purine substitution shifts the equilibrium toward the Z form though how this interaction overcomes the unfavorable electrostatic interactions and decrease in stacking in the Z form has not been determined. Here, a series of C8-arylguanine derivatives, bearing a para-substituent were prepared and the B/Z equilibrium determined. B/Z ratios were measured by CD and conformational effects of the aryl substitution determined by NMR spectroscopy and molecular modeling. The para-substituent was found to have a significant effect on the B/Z DNA equilibrium caused by altering base-pair stacking of the B form and modifying the hydration/ion shell of the B form. A unique melting temperature versus salt concentration was observed and provides evidence relevant to the mechanism of B/Z conformational interconversion.
Collapse
|
8
|
Millen AL, Churchill CDM, Manderville RA, Wetmore SD. Effect of Watson−Crick and Hoogsteen Base Pairing on the Conformational Stability of C8-Phenoxyl-2′-deoxyguanosine Adducts. J Phys Chem B 2010; 114:12995-3004. [DOI: 10.1021/jp105817p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Andrea L. Millen
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, and Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Cassandra D. M. Churchill
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, and Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Richard A. Manderville
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, and Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Stacey D. Wetmore
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, and Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
9
|
Millen AL, Manderville RA, Wetmore SD. Conformational Flexibility of C8-Phenoxyl-2′-deoxyguanosine Nucleotide Adducts. J Phys Chem B 2010; 114:4373-82. [DOI: 10.1021/jp911993f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Andrea L. Millen
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Richard A. Manderville
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Stacey D. Wetmore
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
10
|
Structural and biological impact of radical addition reactions with DNA nucleobases. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2009. [DOI: 10.1016/s0065-3160(08)00005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
11
|
C8-alkynyl- and alkylamino substituted 2′-deoxyguanosines: a universal linker for nucleic acids modification. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.01.091] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|