1
|
Evaluation of Cyc 1 protein stability in Acidithiobacillus ferrooxidans bacterium after E121D mutation by molecular dynamics simulation to improve electron transfer. JOURNAL OF MICROBIOLOGY (SEOUL, KOREA) 2022; 60:526-532. [PMID: 35286603 DOI: 10.1007/s12275-022-1645-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 10/18/2022]
Abstract
Cyc1 (Cytochrome c552) is a protein in the electron transport chain of the Acidithiobacillus ferrooxidans (Af) bacteria which obtain their energy from oxidation Fe2+ to Fe3+. The electrons are directed through Cyc2, RCY (rusticyanin), Cyc1 and Cox aa3 proteins to O2. Cyc1 protein consists of two chains, A and B. In the present study, a novel mutation (E121D) in the A chain of Cyc1 protein was selected due to electron receiving from Histidine 143 of RCY. Then, the changes performed in the E121D mutant were evaluated by MD simulations analyzes. Cyc1 and RCY proteins were docked by a Patchdock server. By E121D mutation, the connection between Zn 1388 of chain B and aspartate 121 of chain A weaken. Asp 121 gets farther from Zn 1388. Therefore, the aspartate gets closer to Cu 1156 of the RCY leading to the higher stability of the RCY/Cyc1 complex. Further, an acidic residue (Glu121) becomes a more acidic residue (Asp121) and improves the electron transfer to Cyc1 protein. The results of RMSF analysis showed further ligand flexibility in mutation. This leads to fluctuation of the active site and increases redox potential at the mutation point and the speed of electron transfer. This study also predicts that in all respiratory chain proteins, electrons probably enter the first active site via glutamate and exit histidine in the second active site of each respiratory chain protein.
Collapse
|
2
|
Jiang V, Khare SD, Banta S. Computational structure prediction provides a plausible mechanism for electron transfer by the outer membrane protein Cyc2 from Acidithiobacillus ferrooxidans. Protein Sci 2021; 30:1640-1652. [PMID: 33969560 DOI: 10.1002/pro.4106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Cyc2 is the key protein in the outer membrane of Acidithiobacillus ferrooxidans that mediates electron transfer between extracellular inorganic iron and the intracellular central metabolism. This cytochrome c is specific for iron and interacts with periplasmic proteins to complete a reversible electron transport chain. A structure of Cyc2 has not yet been characterized experimentally. Here we describe a structural model of Cyc2, and associated proteins, to highlight a plausible mechanism for the ferrous iron electron transfer chain. A comparative modeling protocol specific for trans membrane beta barrel (TMBB) proteins in acidophilic conditions (pH ~ 2) was applied to the primary sequence of Cyc2. The proposed structure has three main regimes: Extracellular loops exposed to low-pH conditions, a TMBB, and an N-terminal cytochrome-like region within the periplasmic space. The Cyc2 model was further refined by identifying likely iron and heme docking sites. This represents the first computational model of Cyc2 that accounts for the membrane microenvironment and the acidity in the extracellular matrix. This approach can be used to model other TMBBs which can be critical for chemolithotrophic microbial growth.
Collapse
Affiliation(s)
- Virginia Jiang
- Department of Chemical Engineering, Columbia University in the City of New York, New York, New York, USA
| | - Sagar D Khare
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Scott Banta
- Department of Chemical Engineering, Columbia University in the City of New York, New York, New York, USA
| |
Collapse
|
3
|
Shojapour M, Fatemi F, Farahmand S, Shasaltaneh MD. Investigation of Cyc 1 protein structure stability after H53I mutation using computational approaches to improve redox potential. J Mol Graph Model 2021; 105:107864. [PMID: 33647753 DOI: 10.1016/j.jmgm.2021.107864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/13/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
Acidithiobacillus ferrooxidans (Af) is an acidophilic bacterium that grows in rigid surroundings and gets its own energy from the oxidation of Fe2+ to Fe3+. These bacteria are involved in the bioleaching process. Cyc1 is a periplasmic protein with a crucial role in electron transportation in the respiratory chain. His53 of the Cyc1 protein, involved in electron transfer to CoxB, was selected for mutation and bioinformatics studies. His53 was substituted by Ile using PyMol software. Molecular dynamics simulations were performed for wild and mutant types of Cyc1 protein. The conformational changes of mutated protein were studied by analyzing RMSD, RMSF, SASA, Rg, H Bond, and DSSP. The results of the RMSF analysis indicated an increase in the flexibility of the ligand in the mutant. Finally, active site instability leads to an increase in the value of E0 at the mutation point and improving electron transfer. On the other, His53 in Cyc1 is interconnected to Glu126 in CoxB through the water molecule (W76) and hydrogen bonding. In the H53I mutation, there was a decrease in the distance between H2O 2030, 2033, and isoleucine 53, and subsequently, the distance to the water molecule 76 between the two proteins was reduced and strengthens the hydrogen bond between Cyc1 and CoxB, finally improves electron transfer and the bioleaching process.
Collapse
Affiliation(s)
- Mahnaz Shojapour
- Department of Biology, Faculty of Sciences, Payame Noor University, Tehran, Iran.
| | - Faezeh Fatemi
- Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Somayeh Farahmand
- Department of Biology, Faculty of Sciences, Payame Noor University, Tehran, Iran
| | | |
Collapse
|
4
|
Mukhopadhyay BP. Recognition dynamics of trinuclear copper cluster and associated histidine residues through conserved or semi-conserved water molecules in human Ceruloplasmin: The involvement of aspartic and glutamic acid gates. J Biomol Struct Dyn 2017; 36:3829-3842. [PMID: 29148316 DOI: 10.1080/07391102.2017.1401003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human Ceruloplasmin belongs to the family of multi-copper oxidases and it is involved in different physiological processes, copper ion transport, iron metabolism, iron homeostasis, and biogenic amine metabolism. MD-simulation studies have indicated the higher hydrophilic susceptibility of the trinuclear copper cluster in native CP compared to its oxygen bound form. The copper (T2/T3) atom Cu3047 of the cluster, which is close to T1 copper center Cu3052 (~13 Å) has a higher affinity for water molecules compared to other copper centers. The water molecules of W3, W4, W5, W9, and W12 conserved water sites are coordinated to Cu3047, where W3, W9, and W12 centers are found to play some crucial role in the stabilization of native trinuclear copper cluster. The hydrogen bonding interaction of Asp169, Glu112, Asp995, and Glu1032 residues with the copper-bound conserved water molecules (W3, W4, W5, W10, and W11) in native CP is observed to be unique. The conformational flexibility of Asp169 and Glu112 and their association with the copper-bound water molecules, but the absence of such interaction in O2-bound simulated structure of the enzyme is indicating some plausible rational on the role of these acidic residues in the gating of O2 molecule in the native trinuclear Cu cluster of CP. The simulation results may shade some new light on the biochemistry/chemistry of CP, specially on the hydration dynamics of the trinuclear copper cluster.
Collapse
|
5
|
Pérez-Henarejos SA, Alcaraz LA, Donaire A. Blue Copper Proteins: A rigid machine for efficient electron transfer, a flexible device for metal uptake. Arch Biochem Biophys 2015; 584:134-48. [DOI: 10.1016/j.abb.2015.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/24/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
|
6
|
Misra N, Patra MC, Panda PK, Sukla LB, Mishra BK. Homology modeling and docking studies of FabH (β-ketoacyl-ACP synthase III) enzyme involved in type II fatty acid biosynthesis of Chlorella variabilis: a potential algal feedstock for biofuel production. J Biomol Struct Dyn 2012; 31:241-57. [PMID: 22830394 DOI: 10.1080/07391102.2012.698247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The concept of using microalgae as an alternative renewable source of biofuel has gained much importance in recent years. However, its commercial feasibility is still an area of concern for researchers. Unraveling the fatty acid metabolic pathway and understanding structural features of various key enzymes regulating the process will provide valuable insights to target microalgae for augmented oil content. FabH (β-ketoacyl-acyl carrier protein synthase; KAS III) is a condensing enzyme catalyzing the initial elongation step of type II fatty acid biosynthetic process and acyl carrier protein (ACP) facilitates the shuttling of the fatty acyl intermediates to the active site of the respective enzymes in the pathway. In the present study, a reliable three-dimensional structure of FabH from Chlorella variabilis, an oleaginous green microalga was modeled and subsequently the key residues involved in substrate binding were determined by employing protein-protein docking and molecular dynamics (MD) simulation protocols. The FabH-ACP complex having the lowest docking energy score showed the binding of ACP to the electropositive FabH surface with strong hydrogen bond interactions. The MD simulation results indicated that the substrate-complexed FabH adopted a more stable conformation than the free enzyme. Further, the FabH structure retained its stability throughout the simulation although noticeable displacements were observed in the loop regions. Molecular simulation studies suggested the importance of crucial hydrogen bonding of the conserved Arg(91) of FabH with Glu(53) and Asp(56) of ACP for exhibiting high affinity between the enzyme and substrate. The molecular modeling results are consistent with available experimental results on the flexibility of FabH and the present study provides first in silico insights into the structural and dynamical aspect of catalytic mechanism of FabH, which could be used for further site-specific mutagenic experiments to develop engineered high oil-yielding microalgal strains for biofuel production.
Collapse
Affiliation(s)
- Namrata Misra
- Bioresources Engineering Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751 013 Odisha, India
| | | | | | | | | |
Collapse
|
7
|
Mahalakshmi A, Shenbagarathai R. Homology modeling of Cry10Aa toxin from B. thuringiensis israelensis and B. thuringiensis subsp. LDC-9. J Biomol Struct Dyn 2011; 28:363-78. [PMID: 20919752 DOI: 10.1080/07391102.2010.10507366] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A three dimensional model was developed for Cry10Aa protein sequence of B. thuringiensis LDC-9 and B. thuringiensis israelensis that has not been solved empirically by X-ray crystallography or NMR. Homology modeling was employed for the structure prediction using Cry2Aa as template protein, a high-resolution X-ray crystallography structure. The model predicted for the B. thuringiensis LDC-9 Cry10Aa protein reveals a partial N-terminal domain only due to its partial sequence of 104 amino acids. B. thuringiensis israelensis Cry10Aa model contains three domains such as domain I, a bundle of eight alpha helices with the central relatively hydrophobic helix surrounded by amphipathic helices while domain II and III contain mostly beta-sheets. Significant structural differences within domain II in this model among all Cry protein structures indicates that it is involved in recognition and binding to cell surfaces. Comparison of B. thuringiensis israelensis predicted structure with available experimentally determined Cry structures reveals identical folds. The distribution of electrostatic potential on the surface of the molecules in the model is non-uniform and identifies one side of the alpha-helical domain as negatively charged indicating orientation of toxic molecules toward the cell membrane during the initial binding with a cell surface receptor. The collective knowledge of Cry toxin structures will lead to a more critical understanding of the structural basis for receptor binding and pore formation, as well as allowing the scope of diversity to be better appreciated. This model will serve as a starting point for the design of mutagenesis experiments aimed to improve the toxicity and to provide a new tool for the elucidation of the mechanism of action of these mosquitocidal proteins.
Collapse
Affiliation(s)
- A Mahalakshmi
- PG and Research Department of Zoology and Biotechnology, Lady Doak College, Madurai-625 002, TamilNadu, India.
| | | |
Collapse
|
8
|
Yang Z, Wu N, Fu Y, Yang G, Wang W, Zu Y, Efferth T. Anti-infectious bronchitis virus (IBV) activity of 1,8-cineole: effect on nucleocapsid (N) protein. J Biomol Struct Dyn 2011; 28:323-30. [PMID: 20919748 DOI: 10.1080/07391102.2010.10507362] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the present study, anti-IBV (infectious bronchitis virus) activity of 1,8-cineole was studied by MTT assay, as well as docking and molecular dynamic (MD) simulations. The CC50 of 1,8-cineole was above 10 mM. And the maximum noncytotoxic concentration (TD0) of 1,8-cineole was determined to be 3.90 ± 0.22 mM, which was much higher than that of ribavirin (0.78 ± 0.15 mM). 1,8-cineole could inhibit IBV with an IC(50) of 0.61 mM. MTT assay showed that the inhibition of IBV by 1, 8-cineole appears to occur moderately before entering the cell but much strongly after penetration of the virus into the cell. In silico simulations indicated that the binding site of 1,8-cineole was located at the N terminus of phosphorylated nucleocapsid (N) protein, with interaction energy equaling -40.33 kcal mol(-1). The residues TyrA92, ProA134, PheA137, AspA138 and TyrA140 had important roles during the binding process and are fully or partially conserved in various IBV strains. Based on spatial and energetic criteria, 1,8-cineole interfered with the binding between RNA and IBV N-protein. Results presented here may suggest that 1,8-cineole possesses anti-IBV properties, and therefore is a potential source of anti-IBV ingredients for the pharmaceutical industry.
Collapse
Affiliation(s)
- Zhiwei Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | | | | | | | | | | | | |
Collapse
|
9
|
Choi M, Davidson VL. Cupredoxins--a study of how proteins may evolve to use metals for bioenergetic processes. Metallomics 2011; 3:140-51. [PMID: 21258692 DOI: 10.1039/c0mt00061b] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cupredoxins are small proteins that contain type I copper centers, which are ubiquitous in nature. They function as electron transfer shuttles between proteins. This review of the structure and properties of native cupredoxins, and those modified by site-directed mutagenesis, illustrates how these proteins may have evolved to specifically bind copper, develop recognition sites for specific redox partners, tune redox potential for a particular function, and allow for efficient electron transfer through the protein matrix. This is relevant to the general understanding of the roles of metals in energy metabolism, respiration and photosynthesis.
Collapse
Affiliation(s)
- Moonsung Choi
- Department of Biochemistry, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216-4505, USA
| | | |
Collapse
|
10
|
Bhargavi K, Chaitanya PK, Ramasree D, Vasavi M, Murthy DK, Uma V. Homology Modeling and Docking Studies of Human Bcl-2L10 Protein. J Biomol Struct Dyn 2010; 28:379-91. [DOI: 10.1080/07391102.2010.10507367] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Chang HY, Ahn Y, Pace LA, Lin MT, Lin YH, Gennis RB. The diheme cytochrome c(4) from Vibrio cholerae is a natural electron donor to the respiratory cbb(3) oxygen reductase. Biochemistry 2010; 49:7494-503. [PMID: 20715760 DOI: 10.1021/bi1004574] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The respiratory chain of Vibrio cholerae contains three bd-type quinol oxygen reductases as well as one cbb(3) oxygen reductase. The cbb(3) oxygen reductase has been previously isolated and characterized; however, the natural mobile electron donor(s) that shuttles electrons between the bc(1) complex and the cbb(3) oxygen reductase is not known. The most likely candidates are the diheme cytochrome c(4) and monoheme cytochrome c(5), which have been previously shown to be present in the periplasm of aerobically grown cultures of V. cholerae. Both cytochromes c(4) and c(5) from V. cholerae have been cloned and expressed heterologously in Escherichia coli. It is shown that reduced cytochrome c(4) is a substrate for the purified cbb(3) oxygen reductase and can support steady state oxygen reductase activity of at least 300 e(-1)/s. In contrast, reduced cytochrome c(5) is not a good substrate for the cbb(3) oxygen reductase. Surprisingly, the dependence of the oxygen reductase activity on the concentration of cytochrome c(4) does not exhibit saturation. Global spectroscopic analysis of the time course of the oxidation of cytochrome c(4) indicates that the apparent lack of saturation is due to the strong dependence of K(M) and V(max) on the concentration of oxidized cytochrome c(4). Whether this is an artifact of the in vitro assay or has physiological significance remains unknown. Cyclic voltammetry was used to determine that the midpoint potentials of the two hemes in cytochrome c(4) are 240 and 340 mV (vs standard hydrogen electrode), similar to the electrochemical properties of other c(4)-type cytochromes. Genomic analysis shows a strong correlation between the presence of a c(4)-type cytochrome and a cbb(3) oxygen reductase within the beta- and gamma-proteobacterial clades, suggesting that cytochrome c(4) is the likely natural electron donor to the cbb(3) oxygen reductases within these organisms. These would include the beta-proteobacteria Neisseria meningitidis and Neisseria gonnorhoeae, in which the cbb(3) oxygen reductases are the only terminal oxidases in their respiratory chains, and the gamma-proteobacterium Pseudomonas stutzeri.
Collapse
Affiliation(s)
- Hsin-Yang Chang
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
12
|
Aman MJ, Karauzum H, Bowden MG, Nguyen TL. Structural model of the pre-pore ring-like structure of Panton-Valentine leukocidin: providing dimensionality to biophysical and mutational data. J Biomol Struct Dyn 2010; 28:1-12. [PMID: 20476791 DOI: 10.1080/073911010010524952] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Panton-Valentine leukocidin (PVL) is a bipartite toxin that plays an important role in the pathogenesis of methicillin-resistant Staphylococcus aureus. Recent clinical data suggest a correlation between PVL and severe cases of S. aureus pneumonia. A clear understanding of the structure and function of PVL is critical to the development of novel, effective treatments. Here, we report an all-atom model of the macromolecular structure of Panton-Valentine leukocidin in its octameric, pre-pore conformation that confirms and extends our understanding of the toxin's mechanism of action.
Collapse
Affiliation(s)
- M Javad Aman
- Integrated BioTherapeutics, Inc., Germantown, MD 20876, USA.
| | | | | | | |
Collapse
|
13
|
Nekrasov AN, Zinchenko AA. Structural Features of the Interfaces in Enzyme-Inhibitor Complexes. J Biomol Struct Dyn 2010; 28:85-96. [DOI: 10.1080/07391102.2010.10507345] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Electron transfer from cytochrome c to cupredoxins. J Biol Inorg Chem 2009; 14:821-8. [DOI: 10.1007/s00775-009-0494-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 02/28/2009] [Indexed: 10/21/2022]
|