1
|
Zhou X, Xu Z, Li A, Zhang Z, Xu S. Double-sides sticking mechanism of vinblastine interacting with α,β-tubulin to get activity against cancer cells. J Biomol Struct Dyn 2018; 37:4080-4091. [PMID: 30451089 DOI: 10.1080/07391102.2018.1539412] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Vinblastine (VLB) and its derivatives have been used for clinical first-line drugs to treat various cancers. Due to the resistance and serious side effects from using VLB and its derivatives, there is a need to discover and develop novel VLB derivatives with high activity against cancer cells. In order to better discover and develop new VLB derivatives, we need to study the structural basis of VLB's anti-cancer cytotoxicity and the mechanism of its interaction with α,β-tubulins. Based on the crystal structure of α,β-microtubule complex protein, the molecular dynamics method including the sampling PMF method was used to study the variation of dissociation free energy (ΔG) of α,β-tubulins under different system conditions, and then from which to study the mechanism of the interaction between VLB and α,β-tubulins. The obtained results show that the dissociation of pure α,β-tubulins requires 197.8 kJ·mol-1 for ΔG. When the VLB molecule exists between the interface of α,β-tubulins, the dissociation ΔG of α,β-tubulins reaches 220.5 kJ·mol-1, which is greater than that of pure α,β-tubulin. The VLB molecule is formed by connecting a vindoline moiety (VM) molecule with a catharanthine moiety (CM) molecule through a carbon-carbon bond, which is a larger molecule. When the CM molecule exists in the middle of α,β-tubulin interface, the dissociation ΔG of α,β-tubulins is 46.2 kJ·mol-1, during which the CM moves with β-tubulin. When the VM molecule exists between the middle of α,β-tubulin interface, the dissociation ΔG of α,β-tubulins is 86.7 kJ·mol-1, during which it moves with α-tubulin. Therefore, the VLB molecule is like a double-sides tape to stick α-tubulin and β-tubulin together. The VLB molecule intervenes the dynamic equilibrium between dissociation and aggregation of α-tubulin and β-tubulin by a double-sides sticking mechanism to exert high activity with toxicity against cancer cell. Besides, our results demonstrate that VLB has its structural basis for anticancer cytotoxicity due to its two compositions composed of a CM molecule and a VM molecule although they have little toxicity against cancer cell alone.
Collapse
Affiliation(s)
- Xiaowen Zhou
- a 1 College of Chemical Science and Technology and Pharmacy, Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University , Kunming , P. R. China
| | - Zeren Xu
- a 1 College of Chemical Science and Technology and Pharmacy, Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University , Kunming , P. R. China
| | - Aijing Li
- a 1 College of Chemical Science and Technology and Pharmacy, Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University , Kunming , P. R. China
| | - Zhengqiong Zhang
- a 1 College of Chemical Science and Technology and Pharmacy, Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University , Kunming , P. R. China
| | - Sichuan Xu
- a 1 College of Chemical Science and Technology and Pharmacy, Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University , Kunming , P. R. China
| |
Collapse
|
2
|
Cui Q, Yang Y, Yao C, Liu R, Li L. Aggregation-Induced Energy Transfer of Conjugated Polymer Materials for ATP Sensing. ACS APPLIED MATERIALS & INTERFACES 2016; 8:35578-35586. [PMID: 27966847 DOI: 10.1021/acsami.6b12525] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Water-soluble conjugated polymers are attractive fluorescent materials for applications in chemical and biological sensing. The molecular wire effect of such polymers amplifies changes in the fluorescence signal, which can be used for detecting various analytes with high sensitivity. In this work, we report an efficient ratiometric fluorescent probe based on a water-soluble conjugated polymer that showed high sensitivity and selectivity toward adenosine 5'-triphosphate (ATP). The macromolecular probe consisted of a polyfluorene backbone doped with 5 mol % 1,4-dithienylbenzothiadiazole (DBT) modified by bis-imidazolium and oligo(ethylene glycol) moieties. Solutions of the polymer emitted purple fluorescence, which changed to red upon addition of ATP molecules. The addition of ATP caused the polymer to aggregate, which enhanced fluorescence resonance energy transfer efficiency from the fluorene segments to DBT units, leading to an increase in red emission. The ratio of the fluorescence at these different wavelengths (I655/I423) showed a strong dependence on the ATP concentration. PF-DBT-BIMEG also exhibited high selectivity for ATP sensing over other representative anions and discriminated it from adenosine 5'-diphosphate (ADP) and adenosine 5'-monophosphate (AMP). This can be explained by the much stronger electrostatic interactions between the polymer and ATP than the interactions between the polymer and ADP or AMP, as confirmed through molecular dynamics simulations.
Collapse
Affiliation(s)
- Qianling Cui
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Yu Yang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Chuang Yao
- College of Mechanical and Electrical Engineering, Yangtze Normal University , Chongqing 408100, China
| | - Ronghua Liu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| |
Collapse
|
3
|
Wang M, Xie W, Li A, Xu S. Structural Basis and Mechanism of Chiral Benzedrine Molecules Interacting With Third Dopamine Receptor. Chirality 2016; 28:674-85. [PMID: 27581600 DOI: 10.1002/chir.22630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 11/09/2022]
Abstract
In order to investigate the chiral benzedrine molecules corresponding to their different characteristics in biochemical systems, we studied their interaction with D3 R using the docking method, molecular dynamic simulation, and quantum chemistry. The obtained results indicate that the active residues for R-benzedrine (RAT) bound with D3 R are Ala132, Asp133, and Tyr55, while Asn57, Asp133, Asp168, Cys172, Gly54, Trp24, and Vall136 act as the active residues for S-benzedrine (SAT). The different active pockets are observed for ART or SAT because they possess different active residues. The binding energies between RAT and SAT with D3 R were determined to be -44.0 kJ.mol(-1) and -71.2 kJ.mol(-1) , respectively. These results demonstrate that SAT within the studied pocket of D3 R has a stronger capability of binding with D3 R, while it is more feasible for RAT to leave from the interior positions of D3 R. In addition, the results suggest that the D3 R protein can recognize chiral benzedrine molecules and influence their different addictive and pharmacological effects in biochemical systems. Chirality 28:674-685, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ming Wang
- Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Wei Xie
- Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Aijing Li
- Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Sichuan Xu
- Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology, Yunnan University, Kunming, China.
| |
Collapse
|
4
|
Xie W, Wang M, Li A, Xu SC. Molecular dynamics simulation of d-Benzedrine transmitting through molecular channels within D 3R. J Biomol Struct Dyn 2016; 35:1672-1684. [PMID: 27191827 DOI: 10.1080/07391102.2016.1190947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dex-Benzedrine (known as d-Benzedrine or SAT) acts in dopamine receptors of central nerve cell system. In clinic, SAT is used to treat a variety of diseases; meanwhile, it has dependence and addiction. In order to investigate the pharmacology and addiction mechanisms of SAT as a medicine, in this paper, we have studied the structure of D3R complex protein with SAT, and based on which, using potential mean force with umbrella samplings and the simulated phospholipid bilayer membrane (or POPC bilayer membrane), the molecular dynamics simulation was performed to obtain free energy changes upon the trajectories for SAT moving along the molecular channels within D3R. The free energy change for SAT transmitting toward the outside of cell along the functional molecular channel within D3R is 83.5 kJ mol-1. The change of free energy for SAT to permeate into the POPC bilayer membrane along the protective molecular channel within D3R is 87.7 kJ mol-1. Our previous work gave that the free energy for Levo-Benzedrine (RAT) transmitting toward the outside of cell along the functional molecular channel within D3R is 91.4 kJ mol-1, while it is 117.7 kJ mol-1 for RAT to permeate into the POPC bilayer membrane along the protective molecular channel within D3R. The values of free energy suggest that SAT relatively prefers likely to pass through the functional molecular channel within D3R for increasing the release of dopamine molecules resulting in a variety of functional effects for SAT. The obtained results show that the pharmacology and addiction mechanisms of SAT as a drug are closely related to the molecular dynamics and mechanism for SAT transmitting along molecular channels within D3R.
Collapse
Affiliation(s)
- Wei Xie
- a Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology and Pharmacy Academy , Yunnan University , Kunming 650091 , China
| | - Ming Wang
- a Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology and Pharmacy Academy , Yunnan University , Kunming 650091 , China
| | - Aijing Li
- a Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology and Pharmacy Academy , Yunnan University , Kunming 650091 , China
| | - Si-Chuan Xu
- a Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology and Pharmacy Academy , Yunnan University , Kunming 650091 , China
| |
Collapse
|
5
|
Chi S, Xie W, Zhang J, Xu S. Theoretical insight into the structural mechanism for the binding of vinblastine with tubulin. J Biomol Struct Dyn 2015; 33:2234-54. [PMID: 25588192 DOI: 10.1080/07391102.2014.999256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vinblastine (VLB) is one of vinca alkaloids with high cytotoxicity toward cancer cells approved for clinical use. However, because of drug resistance, toxicity, and other side effects caused from the use of VLB, new vinca alkaloids with higher cytotoxicity toward cancer cells and other good qualities need to develop. One strategy is to further study and better understand the essence why VLB possesses the high cytotoxicity toward cancer cells. In present work, by using molecular simulation, molecular docking, density functional calculation, and the crystal structure of α,β-tubulin complex, we find two modes labeled in catharanthine moiety (CM) and vindoline moiety (VM) modes of VLB bound with the interface of α,β-tubulin to probe the essence why VLB has the high cytotoxicity toward cancer cells. In the CM mode, nine key residues B-Ser178, B-Asp179, B-Glu183, B-Tyr210, B-Asp226, C-Lys326, C-Asp327, C-Lys336, and C-Lys352 from the α,β-tubulin complex are determined as the active sites for the interaction of VLB with α,β-tubulin. Some of them such as B-Ser178, B-Glu183, B-Tyr210, B-Asp226, C-Lys326, C-Asp327, and C-Lys336 are newly identified as the active sites in present work. The affinity between VLB and the active pocket within the interface of α,β-tubulin is -60.8 kJ mol(-1) in the CM mode. In the VM mode, that is a new mode established in present paper, nine similar key residues B-Lys176, B-Ser178, B-Asp179, B-Glu183, B-Tyr210, B-Asp226, C-Lys326, C-Asp327, and C-Lys336 from the α,β-tubulin complex are found as the active sites for the interaction with VLB. The difference is from one key residue C-Lys352 in the CM mode changed to the key residue B-Lys176 in the VM mode. The affinity between VLB and the active pocket within the interface of α,β-tubulin is -96.3 kJ mol(-1) in the VM mode. Based on the results obtained in present work, and because VLB looks like two faces, composed of CM and VM both to have similar polar active groups, to interact with the active sites, we suggest double-faces sticking mechanism for the binding of VLB to the interface of α,β-tubulin. The double-faces sticking mechanism can be used to qualitatively explain high cytotoxicity toward cancer cells of vinca alkaloids including vinblastine, vincristine, vindestine, and vinorelbine approved for clinical use and vinflunine still in a phase III clinical trial. Furthermore, this mechanism will be applied to develop novel vinca alkaloids with much higher cytotoxicity toward cancer cells.
Collapse
Affiliation(s)
- Shaoming Chi
- a Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource , College of Chemical Science and Technology, Yunnan University , Kunming 650091 , China
| | | | | | | |
Collapse
|
6
|
Shi G, Wang Y, Jin Y, Chi S, Shi Q, Ge M, Wang S, Zhang X, Xu S. Structural insight into the mechanism of epothilone A bound to beta-tubulin and its mutants at Arg282Gln and Thr274Ile. J Biomol Struct Dyn 2012; 30:559-73. [DOI: 10.1080/07391102.2012.687522] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Wang ZJ, Si YX, Oh S, Yang JM, Yin SJ, Park YD, Lee J, Qian GY. The effect of fucoidan on tyrosinase: computational molecular dynamics integrating inhibition kinetics. J Biomol Struct Dyn 2012; 30:460-73. [PMID: 22694253 DOI: 10.1080/07391102.2012.682211] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fucoidan is a complex sulfated polysaccharide extracted from brown seaweed and has a wide variety of biological activities. In this study, we investigated the inhibitory effect of fucoidan on tyrosinase via a combination of inhibition kinetics and computational simulations. Fucoidan reversibly inhibited tyrosinase in a mixed-type manner. Time-interval kinetics showed that the inhibition was processed as first order with biphasic processes. For further insight, we simulated dockings with various sizes of molecular models (monomer to decamer) of fucoidan and showed that the best binding energy change results were obtained from the pentamer (-1.89 kcal/mol) and the hexamer (-1.97 kcal/mol) models of AutoDock Vina. The molecular dynamics simulation confirmed the binding mechanisms between tyrosinase and fucoidan and suggested that fucoidan mostly interacts with several residues including copper ions located in the active site. Our study suggests that fucoidan might be a potential natural antipigment agent.
Collapse
Affiliation(s)
- Zhi-Jiang Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Majumder R, Roy S, Thakur AR. Analysis of Delta–Notch interaction by molecular modeling and molecular dynamic simulation studies. J Biomol Struct Dyn 2012; 30:13-29. [DOI: 10.1080/07391102.2012.674184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Mancini DT, Matos KS, da Cunha EF, Assis TM, Guimarães AP, França TC, Ramalho TC. Molecular modeling studies on nucleoside hydrolase from the biological warfare agentBrucella suis. J Biomol Struct Dyn 2012; 30:125-36. [DOI: 10.1080/07391102.2012.674293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Xu S, Chi S, Jin Y, Shi Q, Ge M, Wang S, Zhang X. Molecular dynamics simulation and density functional theory studies on the active pocket for the binding of paclitaxel to tubulin. J Mol Model 2011; 18:377-91. [PMID: 21537957 DOI: 10.1007/s00894-011-1083-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 04/05/2011] [Indexed: 12/29/2022]
Abstract
Paclitaxel (PTX) is used to treat various cancers, but it also causes serious side effects and resistance. To better design similar compounds with less toxicity and more activity against drug-resistant tumors, it is important to clearly understand the PTX-binding pocket formed by the key residues of active sites on β-tubulin. Using a docking method, molecular dynamics (MD) simulation and density functional theory (DFT), we identified some residues (such as Arg278, Asp26, Asp226, Glu22, Glu27, His229, Arg369, Lys218, Ser277 and Thr276) on β-tubulin that are the active sites responsible for interaction with PTX. Another two residues, Leu371 and Gly279, also likely serve as active sites. Most of these sites contact with the "southern hemisphere" of PTX; only one key residue interacts with the "northern hemisphere" of PTX. These key residues can be divided into four groups, which serve as active compositions in the formation of an active pocket for PTX binding to β-tubulin. This active binding pocket enables a very strong interaction (the strength is predicted to be in the range of -327.8 to -365.7 kJ mol(-1)) between β-tubulin and PTX, with various orientated conformations. This strong interaction means that PTX possesses a high level of activity against cancer cells, a result that is in good agreement with the clinical mechanism of PTX. The described PTX pocket and key active residues will be applied to probe the mechanism of tumor cells resistant to PTX, and to design novel analogs with superior properties.
Collapse
Affiliation(s)
- Sichuan Xu
- Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|