1
|
Sarkar S, Kiren S, Gmeiner WH. Review of Prodrug and Nanodelivery Strategies to Improve the Treatment of Colorectal Cancer with Fluoropyrimidine Drugs. Pharmaceutics 2024; 16:734. [PMID: 38931855 PMCID: PMC11206923 DOI: 10.3390/pharmaceutics16060734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Fluoropyrimidine (FP) drugs are central components of combination chemotherapy regimens for the treatment of colorectal cancer (CRC). FP-based chemotherapy has improved survival outcomes over the last several decades with much of the therapeutic benefit derived from the optimization of dose and delivery. To provide further advances in therapeutic efficacy, next-generation prodrugs and nanodelivery systems for FPs are being developed. This review focuses on recent innovative nanodelivery approaches for FP drugs that display therapeutic promise. We summarize established, clinically useful FP prodrug strategies, including capecitabine, which exploit tumor-specific enzyme expression for optimal anticancer activity. We then describe the use of FP DNA-based polymers (e.g., CF10) for the delivery of activated FP nucleotides as a nanodelivery approach with proven activity in pre-clinical models and with clinical potential. Multiple nanodelivery systems for FP delivery show promise in CRC pre-clinical models and we review advances in albumin-mediated FP delivery, the development of mesoporous silica nanoparticles, emulsion-based nanoparticles, metal nanoparticles, hydrogel-based delivery, and liposomes and lipid nanoparticles that display particular promise for therapeutic development. Nanodelivery of FPs is anticipated to impact CRC treatment in the coming years and to improve survival for cancer patients.
Collapse
Affiliation(s)
- Santu Sarkar
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA;
| | - Sezgin Kiren
- Department of Chemistry, Winston-Salem State University, Winston-Salem, NC 27110, USA;
| | - William H. Gmeiner
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA;
| |
Collapse
|
2
|
Chemistry of Fluorinated Pyrimidines in the Era of Personalized Medicine. Molecules 2020; 25:molecules25153438. [PMID: 32751071 PMCID: PMC7435603 DOI: 10.3390/molecules25153438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
We review developments in fluorine chemistry contributing to the more precise use of fluorinated pyrimidines (FPs) to treat cancer. 5-Fluorouracil (5-FU) is the most widely used FP and is used to treat > 2 million cancer patients each year. We review methods for 5-FU synthesis, including the incorporation of radioactive and stable isotopes to study 5-FU metabolism and biodistribution. We also review methods for preparing RNA and DNA substituted with FPs for biophysical and mechanistic studies. New insights into how FPs perturb nucleic acid structure and dynamics has resulted from both computational and experimental studies, and we summarize recent results. Beyond the well-established role for inhibiting thymidylate synthase (TS) by the 5-FU metabolite 5-fluoro-2′-deoxyuridine-5′-O-monophosphate (FdUMP), recent studies have implicated new roles for RNA modifying enzymes that are inhibited by 5-FU substitution including tRNA methyltransferase 2 homolog A (TRMT2A) and pseudouridylate synthase in 5-FU cytotoxicity. Furthermore, enzymes not previously implicated in FP activity, including DNA topoisomerase 1 (Top1), were established as mediating FP anti-tumor activity. We review recent literature summarizing the mechanisms by which 5-FU inhibits RNA- and DNA-modifying enzymes and describe the use of polymeric FPs that may enable the more precise use of FPs for cancer treatment in the era of personalized medicine.
Collapse
|
3
|
Das U, Sahoo A, Haldar S, Bhattacharya S, Mandal SS, Gmeiner WH, Ghosh S. Secondary Structure-Dependent Physicochemical Interaction of Oligonucleotides with Gold Nanorod and Photothermal Effect for Future Applications: A New Insight. ACS OMEGA 2018; 3:14349-14360. [PMID: 30411066 PMCID: PMC6217695 DOI: 10.1021/acsomega.8b00969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
We investigate the physicochemical interactions of gold nanorod (GNR) with single-stranded, double-stranded, and hairpin DNA structures to improve the biological compatibility as well as the therapeutic potential, including the photothermal effect of the conjugates. Studies have demonstrated that different DNA secondary structures, containing thiol group, have different patterns of physicochemical interaction. Conjugation efficiency of paired oligonucleotides are significantly higher than that of oligonucleotides with naked bases. Furthermore, hairpin-shaped DNA structures are most efficient in terms of conjugation and increased dispersion, with least interference on GNR near-infrared absorbance and photothermal effect. Our conjugation method can successfully exchange the overall coating of the GNR, attaching the maximum number of DNA molecules, thus far reported. Chemical mapping depicted uniform attachment of thiolated DNA molecules without any topological preference on the GNR surface. Hairpin DNA-coated GNR are suitable for intracellular uptake and remain dispersed in the cellular environment. Finally, we conjugated GNR with 5-fluoro-2'-deoxyuridine-containing DNA hairpin and the conjugate demonstrated significant cytotoxic activity against human cervical cancer cell line (KB). Thus, hairpin DNA structures could be utilized for optimal dispersion and photothermal effect of GNR, along with the delivery of cytotoxic nucleotides, developing the concept of multimodality approach.
Collapse
Affiliation(s)
- Upasana Das
- Department
of Anti-Cancer Drug Development and Chemotherapy, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, India
| | - Aditi Sahoo
- Advanced
Mechanical and Materials Characterization Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhash Haldar
- Department
of Medicine, Samuel Oschin Comprehensive
Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Sudin Bhattacharya
- Department
of Anti-Cancer Drug Development and Chemotherapy, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, India
| | - Syam Sundar Mandal
- Department
of Anti-Cancer Drug Development and Chemotherapy, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, India
| | - William H. Gmeiner
- Department
of Cancer Biology, Wake Forest University
School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Supratim Ghosh
- Department
of Anti-Cancer Drug Development and Chemotherapy, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, India
| |
Collapse
|
4
|
Melvin RL, Xiao J, Berenhaut KS, Godwin RC, Salsbury FR. Using correlated motions to determine sufficient sampling times for molecular dynamics. Phys Rev E 2018; 98:023307. [PMID: 30253618 PMCID: PMC6325644 DOI: 10.1103/physreve.98.023307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Indexed: 06/08/2023]
Abstract
Here we present a time-dependent correlation method that provides insight into how long a system takes to grow into its equal-time (Pearson) correlation. We also show a usage of an extant time-lagged correlation method that indicates the time for parts of a system to become decorrelated, relative to equal-time correlation. Given a completed simulation (or set of simulations), these tools estimate (i) how long of a simulation of the same system would be sufficient to observe the same correlated motions, (ii) if patterns of observed correlated motions indicate events beyond the timescale of the simulation, and (iii) how long of a simulation is needed to observe these longer timescale events. We view this method as a decision-support tool that will aid researchers in determining necessary sampling times. In principle, this tool is extendable to any multidimensional time series data with a notion of correlated fluctuations; however, here we limit our discussion to data from molecular-dynamics simulations.
Collapse
Affiliation(s)
- Ryan L. Melvin
- Department of Physics and Department of Mathematics and Statistics, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, North Carolina 27109, USA
| | - Jiajie Xiao
- Department of Physics and Department of Computer Science, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, North Carolina 27109, USA
| | - Kenneth S. Berenhaut
- Department of Mathematics and Statistics, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, North Carolina 27109, USA
| | - Ryan C. Godwin
- Department of Physics, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, North Carolina 27109, USA
| | | |
Collapse
|
5
|
Ghosh S, Mallick S, Das U, Verma A, Pal U, Chatterjee S, Nandy A, Saha KD, Maiti NC, Baishya B, Suresh Kumar G, Gmeiner WH. Curcumin stably interacts with DNA hairpin through minor groove binding and demonstrates enhanced cytotoxicity in combination with FdU nucleotides. Biochim Biophys Acta Gen Subj 2017; 1862:485-494. [PMID: 29107813 DOI: 10.1016/j.bbagen.2017.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/11/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022]
Abstract
We report, based on biophysical studies and molecular mechanical calculations that curcumin binds DNA hairpin in the minor groove adjacent to the loop region forming a stable complex. UV-Vis and fluorescence spectroscopy indicated interaction of curcumin with DNA hairpin. In this novel binding motif, two ɣ H of curcumin heptadiene chain are closely positioned to the A16-H8 and A17-H8, while G12-H8 is located in the close proximity of curcumin α H. Molecular dynamics (MD) simulations suggest, the complex is stabilized by noncovalent forces including; π-π stacking, H-bonding and hydrophobic interactions. Nuclear magnetic resonance (NMR) spectroscopy in combination with molecular dynamics simulations indicated curcumin is bound in the minor groove, while circular dichroism (CD) spectra suggested minute enhancement in base stacking and a little change in DNA helicity, without significant conformational change of DNA hairpin structure. The DNA:curcumin complex formed with FdU nucleotides rather than Thymidine, demonstrated enhanced cytotoxicity towards oral cancer cells relative to the only FdU substituted hairpin. Fluorescence co-localization demonstrated stability of the complex in biologically relevant conditions, including its cellular uptake. Acridine orange/EtBr staining further confirmed the enhanced cytotoxic effects of the complex, suggesting apoptosis as mode of cell death. Thus, curcumin can be noncovalently complexed to small DNA hairpin for cellular delivery and the complex showed increased cytotoxicity in combination with FdU nucleotides, demonstrating its potential for advanced cancer therapy.
Collapse
Affiliation(s)
- Supratim Ghosh
- Chittaranjan National Cancer Institute, Kolkata, WB 700026, India.
| | - Sumana Mallick
- CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India
| | - Upasana Das
- Chittaranjan National Cancer Institute, Kolkata, WB 700026, India
| | - Ajay Verma
- Centre of BioMedical Research, Lucknow, UP 226014, India
| | - Uttam Pal
- CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India
| | | | - Abhishek Nandy
- CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India
| | - Krishna D Saha
- CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India
| | | | - Bikash Baishya
- Centre of BioMedical Research, Lucknow, UP 226014, India
| | - G Suresh Kumar
- CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India
| | - William H Gmeiner
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
6
|
Melvin RL, Gmeiner WH, Salsbury FR. All-atom MD indicates ion-dependent behavior of therapeutic DNA polymer. Phys Chem Chem Phys 2017; 19:22363-22374. [PMID: 28805211 PMCID: PMC5600158 DOI: 10.1039/c7cp03479b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Understanding the efficacy of and creating delivery mechanisms for therapeutic nucleic acids requires understanding structural and kinetic properties which allow these polymers to promote the death of cancerous cells. One molecule of interest is a 10 mer of FdUMP (5-fluoro-2'-deoxyuridine-5'-O-monophosphate) - also called F10. Here we investigate the structural and kinetic behavior of F10 in intracellular and extracellular solvent conditions along with non-biological conditions that may be efficacious in in vitro preparations of F10 delivery systems. From our all-atom molecular dynamics simulations totaling 80 microseconds, we predict that F10's phosphate groups form close-range interactions with calcium and zinc ions, with calcium having the highest affinity of the five ions investigated. We also predict that F10's interactions with magnesium, potassium and sodium are almost exclusively long-range interactions. In terms of intramolecular interactions, we find that F10 is least structured (in terms of hydrogen bonds among bases) in the 150 mM NaCl (extracellular-like solvent conditions) and most structured in 150 mM ZnCl2. Kinetically, we see that F10 is unstable in the presence of magnesium, sodium or potassium, finding stable kinetic traps in the presence of calcium or zinc.
Collapse
Affiliation(s)
- Ryan L Melvin
- Department of Physics, Wake Forest University, Winston Salem, NC, USA.
| | | | | |
Collapse
|
7
|
Melvin RL, Gmeiner WH, Salsbury FR. All-Atom MD Predicts Magnesium-Induced Hairpin in Chemically Perturbed RNA Analog of F10 Therapeutic. J Phys Chem B 2017; 121:7803-7812. [PMID: 28745046 DOI: 10.1021/acs.jpcb.7b04724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Given their increasingly frequent usage, understanding the chemical and structural properties which allow therapeutic nucleic acids to promote the death of cancer cells is critical for medical advancement. One molecule of interest is a 10-mer of FdUMP (5-fluoro-2'-deoxyuridine-5'-O-monophosphate) also called F10. To investigate causes of structural stability, we have computationally restored the 2' oxygen on each ribose sugar of the phosphodiester backbone, creating FUMP[10]. Microsecond time-scale, all-atom, simulations of FUMP[10] in the presence of 150 mM MgCl2 predict that the strand has a 45% probability of folding into a stable hairpin-like secondary structure. Analysis of 16 μs of data reveals phosphate interactions as likely contributors to the stability of this folded state. Comparison with polydT and polyU simulations predicts that FUMP[10]'s lowest order structures last for one to 2 orders of magnitude longer than similar nucleic acid strands. Here we provide a brief structural and conformational analysis of the predicted structures of FUMP[10], and suggest insights into its stability via comparison to F10, polydT, and polyU.
Collapse
Affiliation(s)
- Ryan L Melvin
- Department of Physics, Wake Forest University , Winston-Salem, North Carolina 27109, United States.,Department of Mathematics and Statistics, Wake Forest University , Winston-Salem, North Carolina 27109, United States
| | - William H Gmeiner
- Department of Cancer Biology, Wake Forest University School of Medicine , Winston-Salem North Carolina 27101, United States
| | - Freddie R Salsbury
- Department of Physics, Wake Forest University , Winston-Salem, North Carolina 27109, United States
| |
Collapse
|
8
|
Melvin RL, Thompson WG, Godwin RC, Gmeiner WH, Salsbury FR. MutS α's Multi-Domain Allosteric Response to Three DNA Damage Types Revealed by Machine Learning. FRONTIERS IN PHYSICS 2017; 5:10. [PMID: 31938712 PMCID: PMC6959842 DOI: 10.3389/fphy.2017.00010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
MutSα is a key component in the mismatch repair (MMR) pathway. This protein is responsible for initiating the signaling pathways for DNA repair or cell death. Herein we investigate this heterodimer's post-recognition, post-binding response to three types of DNA damage involving cytotoxic, anti-cancer agents-carboplatin, cisplatin, and FdU. Through a combination of supervised and unsupervised machine learning techniques along with more traditional structural and kinetic analysis applied to all-atom molecular dynamics (MD) calculations, we predict that MutSα has a distinct response to each of the three damage types. Via a binary classification tree (a supervised machine learning technique), we identify key hydrogen bond motifs unique to each type of damage and suggest residues for experimental mutation studies. Through a combination of a recently developed clustering (unsupervised learning) algorithm, RMSF calculations, PCA, and correlated motions we predict that each type of damage causes MutSα to explore a specific region of conformation space. Detailed analysis suggests a short range effect for carboplatin-primarily altering the structures and kinetics of residues within 10 angstroms of the damaged DNA-and distinct longer-range effects for cisplatin and FdU. In our simulations, we also observe that a key phenylalanine residue-known to stack with a mismatched or unmatched bases in MMR-stacks with the base complementary to the damaged base in 88.61% of MD frames containing carboplatinated DNA. Similarly, this Phe71 stacks with the base complementary to damage in 91.73% of frames with cisplatinated DNA. This residue, however, stacks with the damaged base itself in 62.18% of trajectory frames with FdU-substituted DNA and has no stacking interaction at all in 30.72% of these frames. Each drug investigated here induces a unique perturbation in the MutSα complex, indicating the possibility of a distinct signaling event and specific repair or death pathway (or set of pathways) for a given type of damage.
Collapse
Affiliation(s)
- Ryan L. Melvin
- Salsbury Group, Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - William G. Thompson
- Salsbury Group, Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Ryan C. Godwin
- Salsbury Group, Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - William H. Gmeiner
- Gmeiner Laboratory, Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Freddie R. Salsbury
- Salsbury Group, Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| |
Collapse
|
9
|
Melvin RL, Godwin RC, Xiao J, Thompson WG, Berenhaut KS, Salsbury FR. Uncovering Large-Scale Conformational Change in Molecular Dynamics without Prior Knowledge. J Chem Theory Comput 2016; 12:6130-6146. [PMID: 27802394 PMCID: PMC5719493 DOI: 10.1021/acs.jctc.6b00757] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As the length of molecular dynamics (MD) trajectories grows with increasing computational power, so does the importance of clustering methods for partitioning trajectories into conformational bins. Of the methods available, the vast majority require users to either have some a priori knowledge about the system to be clustered or to tune clustering parameters through trial and error. Here we present non-parametric uses of two modern clustering techniques suitable for first-pass investigation of an MD trajectory. Being non-parametric, these methods require neither prior knowledge nor parameter tuning. The first method, HDBSCAN, is fast-relative to other popular clustering methods-and is able to group unstructured or intrinsically disordered systems (such as intrinsically disordered proteins, or IDPs) into bins that represent global conformational shifts. HDBSCAN is also useful for determining the overall stability of a system-as it tends to group stable systems into one or two bins-and identifying transition events between metastable states. The second method, iMWK-Means, with explicit rescaling followed by K-Means, while slower than HDBSCAN, performs well with stable, structured systems such as folded proteins and is able to identify higher resolution details such as changes in relative position of secondary structural elements. Used in conjunction, these clustering methods allow a user to discern quickly and without prior knowledge the stability of a simulated system and identify both local and global conformational changes.
Collapse
Affiliation(s)
- Ryan L. Melvin
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Ryan C. Godwin
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Jiajie Xiao
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - William G. Thompson
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Kenneth S. Berenhaut
- Department of Mathematics & Statistics, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Freddie R. Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| |
Collapse
|
10
|
Melvin RL, Gmeiner WH, Salsbury FR. All-Atom Molecular Dynamics Reveals Mechanism of Zinc Complexation with Therapeutic F10. J Phys Chem B 2016; 120:10269-10279. [PMID: 27606431 DOI: 10.1021/acs.jpcb.6b07753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Advancing the use of therapeutic nucleic acids requires understanding the chemical and structural properties that allow these polymers to promote the death of malignant cells. Here we explore Zn2+ complexation by the fluoropyrimidine polymer F10, which has strong activities in multiple preclinical models of cancer. Delivery of fluoropyrimidine FdUMP in the 10-residue polymer F10 rather than the nucleobase (5-fluorouracil) allows consideration of metal ion binding effects on drug delivery. The differences in metal ion interactions with fluoropyrimidine compared to normal DNA results in conformation changes that affect protein binding, cell uptake, and codelivery of metals such as zinc, and the cytoxicity thereof. Microsecond-time-scale, all-atom simulations of F10 predict that zinc selectively stabilizes the polymer via interactions with backbone phosphate groups and suggest a mechanism of complexation for the zinc-base interactions shown in previous experimental work. The positive zinc ions are attracted to the negatively charged phosphate groups. Once the Zn2+ ions are near F10, they cause the base's N3 nitrogen to deprotonate. Subsequently, magnesium atoms displace zinc from their interactions with phosphate, freeing the zinc ions to interact with the FdU bases by forming weak interactions with the O4 oxygen and the fluorine attached to C5. These interactions of magnesium with phosphate groups and zinc with nucleobases agree with previous experimental results and are seen in MD simulations only when magnesium is introduced after N3 deprotonation, indicating a specific order of metal binding events. Additionally, we predict interactions between zinc and F10's O2 atoms, which were not previously observed. By comparison to 10mers of polyU and polydT, we also predict that the presence of fluorine increases the binding affinity of zinc to F10 relative to analogous strands of RNA and DNA consisting of only native nucleotides.
Collapse
Affiliation(s)
- Ryan L Melvin
- Department of Physics, Wake Forest University , Winston-Salem, North Carolina 27109, United States
| | - William H Gmeiner
- Department of Cancer Biology, Wake Forest University School of Medicine , Winston-Salem, North Carolina 27157, United States
| | - Freddie R Salsbury
- Department of Physics, Wake Forest University , Winston-Salem, North Carolina 27109, United States
| |
Collapse
|
11
|
Gmeiner WH, Boyacioglu O, Stuart CH, Jennings-Gee J, Balaji K. The cytotoxic and pro-apoptotic activities of the novel fluoropyrimidine F10 towards prostate cancer cells are enhanced by Zn(2+) -chelation and inhibiting the serine protease Omi/HtrA2. Prostate 2015; 75:360-9. [PMID: 25408502 PMCID: PMC4293244 DOI: 10.1002/pros.22922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Intracellular Zn(2+) levels decrease during prostate cancer progression and agents that modulate intracellular Zn(2+) are cytotoxic to prostate cancer cells by an incompletely described mechanism. F10 is a new polymeric fluoropyrimidine drug-candidate that displays strong activity with minimal systemic toxicity in pre-clinical models of prostate cancer and other malignancies. The effects of exogenous Zn(2+) or Zn(2+) chelation for enhancing F10 cytotoxicity are investigated as is the role of Omi/HtrA2, a serine protease that promotes apoptosis in response to cellular stress. METHODS To test the hypothesis that the pro-apoptotic effects of F10 could be enhanced by modulating intracellular Zn(2+) we investigated cell-permeable and cell-impermeable Zn(2+) chelators and exogenous Zn(2+) and evaluated cell viability and apoptosis in cellular models of castration-resistant prostate cancer (CRPC; PC3, C4-2). The role of Omi/HtrA2 for modulating apoptosis was evaluated by pharmacological inhibition and Western blotting. RESULTS Exogenous Zn(2+) initially reduced prostate cancer cell viability but these effects were transitory and were ineffective at enhancing F10 cytotoxicity. The cell-permeable Zn(2+) -chelator tetrakis-(2-pyridylmethl) ethylenediamine (TPEN) induced apoptosis in prostate cancer cells and enhanced the pro-apoptotic effects of F10. The pro-apoptotic effects of Zn(2+) -chelation in combination with F10 treatment were enhanced by inhibiting Omi/HtrA2 implicating this serine protease as a novel target for prostate cancer treatment. CONCLUSIONS Zn(2+) -chelation enhances the pro-apoptotic effects of F10 and may be useful for enhancing the effectiveness of F10 for treatment of advanced prostate cancer. The serine protease Omi/HtrA2 modulates Zn(2+) -dependent apoptosis in prostate cancer cells and represents a new target for treatment of CRPC. Prostate 75:360-369, 2015. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- William H. Gmeiner
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157
- Address correspondence to this author: Phone: (336) 716-6216, Fax: (336) 716-0255,
| | - Olcay Boyacioglu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Christopher H. Stuart
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
- Program in Molecular Medicine and Translational Science, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Jamie Jennings-Gee
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - K.C. Balaji
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
12
|
Stuart CH, Horita DA, Thomas MJ, Salsbury FR, Lively MO, Gmeiner WH. Site-specific DNA-doxorubicin conjugates display enhanced cytotoxicity to breast cancer cells. Bioconjug Chem 2014; 25:406-13. [PMID: 24450459 PMCID: PMC3983131 DOI: 10.1021/bc4005427] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Doxorubicin (Dox) is widely used
for breast cancer treatment but
causes serious side effects including cardiotoxicity that may adversely
impact patient lifespan even if treatment is successful. Herein, we
describe selective conjugation of Dox to a single site in a DNA hairpin
resulting in a highly stable complex that enables Dox to be used more
effectively. Selective conjugation of Dox to G15 in the hairpin loop
was verified using site-specific labeling with [2-15N]-2′-deoxyguanosine
in conjunction with [1H–15N] 2D NMR,
while 1:1 stoichiometry for the conjugate was validated by ESI-QTOF
mass spectrometry and UV spectroscopy. Molecular modeling indicated
covalently bound Dox also intercalated into the stem of the hairpin
and stability studies demonstrated the resulting Dox-conjugated hairpin
(DCH) complex had a half-life >30 h, considerably longer than alternative
covalent and noncovalent complexes. Secondary conjugation of DCH with
folic acid (FA) resulted in increased internalization into breast
cancer cells. The dual conjugate, DCH-FA, can be used for safer and
more effective chemotherapy with Dox and this conjugation strategy
can be expanded to include additional anticancer drugs.
Collapse
Affiliation(s)
- Christopher H Stuart
- Department of Cancer Biology, ‡Department of Molecular Medicine and Translation Science, Wake Forest School of Medicine, and §Department of Biochemistry, Wake Forest School of Medicine , Winston-Salem, North Carolina 27157, United States
| | | | | | | | | | | |
Collapse
|