1
|
Samad A, Hamza A, Imam MA, Ahmad Chaudhary A, Alawam AS, Abdullah Almuqri E, Islam A, Parveen S. pH induced structural and conformational changes in nucleocapsid protein leads to intermediate like conformation: a biophysical and computational approach. J Biomol Struct Dyn 2024:1-12. [PMID: 39718618 DOI: 10.1080/07391102.2024.2442791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/29/2024] [Indexed: 12/25/2024]
Abstract
Nucleocapsid protein (N) of SARS-CoV-2 is a multivalent protein, which is responsible for viral replication, assembly, packaging and modulates host immune response. In this study, we report conformational measurements of N protein at different pH by observing transition in secondary and tertiary structural contents by biophysical and computational approaches. Spectroscopic measurements revealed that N protein loses its secondary and tertiary structure at extreme acidic pH while maintaining its native conformation at mild acidic and alkaline pH. Molecular dynamics simulation studies validated spectroscopic findings. Secondary structure estimation confirmed circular dichroism (CD) findings that participation of total number of average residues in formation of native structure is higher at physiological pH, and coil percentage is higher at acidic pH. In molten globule (MG) state, secondary structure is conserved but here, CD data reveal more random structure at low pH. In pre-MG, ANS (8-anilino-1-napthalene sulfonate) binds weakly to protein as compared to MG but here, ANS binds strongly to protein. All the above-mentioned findings suggested formation of intermediary like state at low pH, which can be attributed to an off-pathway species. Unravelling structural characteristics of N protein will help understand phase-separation, protein-protein interaction and host-immune response modulation behaviour, which will eventually help in designing novel therapeutic target against COVID-19.
Collapse
Affiliation(s)
- Abdus Samad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Abu Hamza
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Md Ali Imam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdullah S Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Eman Abdullah Almuqri
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
2
|
Waseem R, Shamsi A, Shahbaz M, Khan T, Kazim SN, Ahmad F, Hassan MI, Islam A. Effect of pH on the structure and stability of irisin, a multifunctional protein: Multispectroscopic and molecular dynamics simulation approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
Reilley DJ, Wang J, Dokholyan NV, Alexandrova AN. Titr-DMD-A Rapid, Coarse-Grained Quasi-All-Atom Constant pH Molecular Dynamics Framework. J Chem Theory Comput 2021; 17:4538-4549. [PMID: 34165292 PMCID: PMC10662685 DOI: 10.1021/acs.jctc.1c00338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The pH-dependence of enzyme fold stability and catalytic activity is a fundamentally dynamic, structural property which is difficult to study. The challenges and expense of investigating dynamic, atomic scale behavior experimentally means that computational methods, particularly constant pH molecular dynamics (CpHMD), are well situated tools for this. However, these methods often struggle with affordable sampling of sufficiently long time scales while also obtaining accurate pKa prediction and verifying the structures they generate. We introduce Titr-DMD, an affordable CpHMD method that combines the quasi-all-atom coarse-grained discrete molecular dynamics (DMD) method for conformational sampling with Propka for pKa prediction, to circumvent these issues. The combination enables rapid sampling on limited computational resources, while simulations are still performed on the atomic scale. We benchmark the method on a set of proteins with experimentally attested pKa and on the pH triggered conformational change in a staphylococcal nuclease mutant, a rare experimental study of such behavior. Our results show Titr-DMD to be an effective and inexpensive method to study pH-coupled protein dynamics.
Collapse
Affiliation(s)
- David J Reilley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Jian Wang
- Department of Pharmacology, Department of Biochemistry and Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology, Department of Biochemistry and Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Departments of Chemistry and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, Los Angeles, California 90095-1569, United States
| |
Collapse
|
4
|
Huber RG, Marzinek JK, Boon PLS, Yue W, Bond PJ. Computational modelling of flavivirus dynamics: The ins and outs. Methods 2021; 185:28-38. [PMID: 32526282 PMCID: PMC7278654 DOI: 10.1016/j.ymeth.2020.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/24/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Enveloped viruses such as the flaviviruses represent a significant burden to human health around the world, with hundreds of millions of people each year affected by dengue alone. In an effort to improve our understanding of the molecular basis for the infective mechanisms of these viruses, extensive computational modelling approaches have been applied to elucidate their conformational dynamics. Multiscale protocols have been developed to simulate flavivirus envelopes in close accordance with biophysical data, in particular derived from cryo-electron microscopy, enabling high-resolution refinement of their structures and elucidation of the conformational changes associated with adaptation both to host environments and to immunological factors such as antibodies. Likewise, integrative modelling efforts combining data from biophysical experiments and from genome sequencing with chemical modification are providing unparalleled insights into the architecture of the previously unresolved nucleocapsid complex. Collectively, this work provides the basis for the future rational design of new antiviral therapeutics and vaccine development strategies targeting enveloped viruses.
Collapse
Affiliation(s)
- Roland G Huber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore
| | - Jan K Marzinek
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore
| | - Priscilla L S Boon
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (NUS), University Hall, Tan Chin Tuan Wing #04-02, 119077, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 16 Science Drive 4, Building S3, Singapore
| | - Wan Yue
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, 138672, Singapore
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 16 Science Drive 4, Building S3, Singapore.
| |
Collapse
|
5
|
Hyatt JG, Prévost S, Devos JM, Mycroft-West CJ, Skidmore MA, Winter A. Molecular Changes in Dengue Envelope Protein Domain III upon Interaction with Glycosaminoglycans. Pathogens 2020; 9:pathogens9110935. [PMID: 33187224 PMCID: PMC7697694 DOI: 10.3390/pathogens9110935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 11/16/2022] Open
Abstract
Dengue fever is a rapidly emerging vector-borne viral disease with a growing global burden of approximately 390 million new infections per annum. The Dengue virus (DENV) is a flavivirus spread by female mosquitos of the aedes genus, but the mechanism of viral endocytosis is poorly understood at a molecular level, preventing the development of effective transmission blocking vaccines (TBVs). Recently, glycosaminoglycans (GAGs) have been identified as playing a role during initial viral attachment through interaction with the third domain of the viral envelope protein (EDIII). Here, we report a systematic study investigating the effect of a range of biologically relevant GAGs on the structure and oligomeric state of recombinantly generated EDIII. We provide novel in situ biophysical evidence that heparin and chondroitin sulphate C induce conformational changes in EDIII at the secondary structure level. Furthermore, we report the ability of chondroitin sulphate C to bind EDIII and induce higher-order dynamic molecular changes at the tertiary and quaternary structure levels which are dependent on pH, GAG species, and the GAG sulphation state. Lastly, we conducted ab initio modelling of Small Angle Neutron Scattering (SANS) data to visualise the induced oligomeric state of EDIII caused by interaction with chondroitin sulphate C, which may aid in TBV development.
Collapse
Affiliation(s)
- James G. Hyatt
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK; (J.G.H.); (C.J.M.-W.); (M.A.S.)
| | - Sylvain Prévost
- Large Scale Structures Group, Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble CEDEX 9, France;
| | - Juliette M. Devos
- Life Sciences Group, Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble CEDEX 9, France;
| | - Courtney J. Mycroft-West
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK; (J.G.H.); (C.J.M.-W.); (M.A.S.)
| | - Mark A. Skidmore
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK; (J.G.H.); (C.J.M.-W.); (M.A.S.)
| | - Anja Winter
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK; (J.G.H.); (C.J.M.-W.); (M.A.S.)
- Life Sciences Group, Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble CEDEX 9, France;
- Correspondence: ; Tel.: +44-01782-7-33117
| |
Collapse
|
6
|
Multiple Virtual Screening Strategies for the Discovery of Novel Compounds Active Against Dengue Virus: A Hit Identification Study. Sci Pharm 2019. [DOI: 10.3390/scipharm88010002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dengue infection is caused by a mosquito-borne virus, particularly in children, which may even cause death. No effective prevention or therapeutic agents to cure this disease are available up to now. The dengue viral envelope (E) protein was discovered to be a promising target for inhibition in several steps of viral infection. Structure-based virtual screening has become an important technique to identify first hits in a drug screening process, as it is possible to reduce the number of compounds to be assayed, allowing to save resources. In the present study, pharmacophore models were generated using the common hits approach (CHA), starting from trajectories obtained from molecular dynamics (MD) simulations of the E protein complexed with the active inhibitor, flavanone (FN5Y). Subsequently, compounds presented in various drug databases were screened using the LigandScout 4.2 program. The obtained hits were analyzed in more detail by molecular docking, followed by extensive MD simulations of the complexes. The highest-ranked compound from this procedure was then synthesized and tested on its inhibitory efficiency by experimental assays.
Collapse
|
7
|
Shahbaaz M, Potemkin V, Grishina M, Bisetty K, Hassan I. The structural basis of acid resistance in Mycobacterium tuberculosis: insights from multiple pH regime molecular dynamics simulations. J Biomol Struct Dyn 2019; 38:4483-4492. [PMID: 31625457 DOI: 10.1080/07391102.2019.1682676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The dormant Mycobacterium tuberculosis is evolved to develop the tolerance against the acidification of phagolysosome by the action of gamma interferon. The molecular mechanism responsible for the development of the resistance towards the acidic conditions in M. tuberculosis is not fully understood. Therefore, the current analysis was performed which studies the mechanism of acid tolerance by correlating the alteration in the protonation state of conserved residues in virulent proteins with changes in their folding states. The pH dependencies of proteins were studied using an efficient computational scheme which enables the understanding of their conformational behavior by molecular dynamics (MD) simulations. The adopted methodology involves cyclically updating of the ionization states of titrable residues in the studied proteins with conventional MD steps, which were applied to the newly generated ionization configuration. Significant pH-dependent protein structural stability parameters consistent with the changes of the protonation states of conserved residues were observed. Among the studied proteins, the peptidoglycan binding protein ompATB, carboxylesterase LipF and two-component systems' transcriptional regulator PhoP showed highest structural conservation in the observed acidic pH range throughout the course of MD simulations. The current study provides a better understanding of acid tolerance mechanisms present in M. tuberculosis and can facilitate the drug development strategies against the dormant protein targets.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Shahbaaz
- South African National Bioinformatics Institute, University of the Western Cape, Bellville, Cape Town, South Africa.,Laboratory of Computational Modeling of Drugs, South Ural State University, Chelyabinsk, Russia
| | - Vladimir Potemkin
- Laboratory of Computational Modeling of Drugs, South Ural State University, Chelyabinsk, Russia
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, South Ural State University, Chelyabinsk, Russia
| | - Krishna Bisetty
- Department of Chemistry, Durban University of Technology, Durban, South Africa
| | - Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
8
|
Barroso da Silva FL, Sterpone F, Derreumaux P. OPEP6: A New Constant-pH Molecular Dynamics Simulation Scheme with OPEP Coarse-Grained Force Field. J Chem Theory Comput 2019; 15:3875-3888. [DOI: 10.1021/acs.jctc.9b00202] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fernando Luís Barroso da Silva
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do café, s/no, Ribeirão Preto, São Paulo BR-14040-903, Brazil
- Laboratoire de Biochimie Theórique, UPR 9080 CNRS, Institut de Biologie Physico Chimique, Université Paris Diderot − Paris 7 et Université Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Fabio Sterpone
- Laboratoire de Biochimie Theórique, UPR 9080 CNRS, Institut de Biologie Physico Chimique, Université Paris Diderot − Paris 7 et Université Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
9
|
Binding pattern and susceptibility of epigallocatechin gallate against envelope protein homodimer of Zika virus: A molecular dynamics study. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
Sharma KK, Marzinek JK, Tantirimudalige SN, Bond PJ, Wohland T. Single-molecule studies of flavivirus envelope dynamics: Experiment and computation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 143:38-51. [PMID: 30223001 DOI: 10.1016/j.pbiomolbio.2018.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022]
Abstract
Flaviviruses are simple enveloped viruses exhibiting complex structural and functional heterogeneities. Decades of research have provided crucial basic insights, antiviral medication and moderately successful gene therapy trials. The most infectious particle is, however, not always the most abundant one in a population, questioning the utility of classic ensemble-averaging virology approaches. Indeed, viral replication is often not particularly efficient, prone to errors or containing parallel routes. Here, we review different single-molecule sensitive fluorescence methods that are employed to investigate flaviviruses. In particular, we review how (i) time-resolved Förster resonance energy transfer (trFRET) was applied to probe dengue envelope conformations; (ii) FRET-fluorescence correlation spectroscopy to investigate dengue envelope intrinsic dynamics and (iii) single particle tracking to follow the path of dengue viruses in cells. We also discuss how such methods may be supported by molecular dynamics (MD) simulations over a range of spatio-temporal scales, to provide complementary data on the structure and dynamics of flaviviral systems. We describe recent improvements in multiscale MD approaches that allowed the simulation of dengue particle envelopes in near-atomic resolution. We hope this review is an incentive for setting up and applying similar single-molecule studies and combine them with MD simulations to investigate structural dynamics of entire flavivirus particles over the nanosecond-to-millisecond time-scale and follow viruses during infection in cells over milliseconds to minutes.
Collapse
Affiliation(s)
- Kamal Kant Sharma
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Jan K Marzinek
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Sarala Neomi Tantirimudalige
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Peter J Bond
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore.
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Department of Chemistry, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore.
| |
Collapse
|
11
|
New insights into flavivirus biology: the influence of pH over interactions between prM and E proteins. J Comput Aided Mol Des 2017; 31:1009-1019. [DOI: 10.1007/s10822-017-0076-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
|
12
|
Study of the mechanism of protonated histidine-induced conformational changes in the Zika virus dimeric envelope protein using accelerated molecular dynamic simulations. J Mol Graph Model 2017; 74:203-214. [PMID: 28445832 DOI: 10.1016/j.jmgm.2017.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 11/23/2022]
Abstract
The Zika virus has drawn worldwide attention because of the epidemic diseases it causes. It is a flavivirus that has an icosahedral protein shell constituted by an envelope glycoprotein (E-protein) and membrane protein (M-protein) in the mature virion. The multistep process of membrane fusion to infect the host cell is pH-induced. To understand the mechanism of the conformational changes in the (E-M)2 protein homodimer embedded in the membrane, two 200-ns accelerated dynamic simulations were performed under different pH conditions. The low pH condition weakens the interactions and correlations in both E-protein monomers and in the E-M heterodimer. The highly conserved residues, His249, His288, His323 and His446, are protonated under low pH conditions and play key roles in driving the fusion process. The analysis and discussion in this study may provide some insight into the molecular mechanism of Zika virus infection.
Collapse
|
13
|
Receptor-Guided De Novo Design of Dengue Envelope Protein Inhibitors. Appl Biochem Biotechnol 2015; 177:861-78. [PMID: 26299376 DOI: 10.1007/s12010-015-1784-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/27/2015] [Indexed: 10/23/2022]
Abstract
Inhibitor design associated with the dynamics of dengue envelope protein at pre-fusion stage is a prominent strategy to interfere fusion transition of dengue virus with the host cell membrane. Receptor-guided de novo inhibitors were designed based on the knowledge of co-crystallized detergent, β-octyl glucoside. Pharmacophore features distribution showed the preference of aromatic groups with H bonding features connected to aliphatic bulky group as the skeleton for inhibitor design. Molecular dynamic simulations revealed (2R)-2-[(6-amino-1-oxohexan-2-yl)amino]-4-[6-(4-phenylpiperidine-1-yl)-1,2-benzoxazol-3-yl]butanoate as the probable binder which developed extensive conservative interactions despite the local pocket residues movements especially from kl β-hairpin, the key structural unit for initiating conformational changes required for fusion transition. The electronic and hydrophobic potentials also indicated that butanoate molecule as the initial lead for envelope protein inhibitors.
Collapse
|
14
|
Tripathy DR, Pandey NK, Dinda AK, Ghosh S, Singha Roy A, Dasgupta S. An insight into the ribonucleolytic and antiangiogenic activity of buffalo lactoferrin. J Biomol Struct Dyn 2015; 33:184-95. [DOI: 10.1080/07391102.2013.865564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|