1
|
Zarudnaya MI, Potyahaylo AL, Kolomiets IM, Gorb LG. Structural diversity of the region encompassing DIS, SD and Psi hairpins in HIV and SIV genomes. Virus Res 2023; 336:199197. [PMID: 37574135 PMCID: PMC10483063 DOI: 10.1016/j.virusres.2023.199197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
We investigated in silico the secondary structure of the region encompassing DIS, SD and Psi hairpins in HIV-1 genomes of rare groups N, O and P, HIV-2 genomes and SIV genomes from chimpanzees, gorillas and monkeys. We found that the structure of this region in SIVcpzptt genomes of the 1st and the 2nd clusters is similar to that in HIV-1 genomes of groups M and N, respectively. Further, the structure of the region encompassing DIS, SD and Psi hairpins is similar in HIV-1 genomes of groups O and P and SIVgor genomes. Here we report that the DIS hairpin and truncated Psi hairpin are conserved in all HIV-1 and SIVcpz/gor genomes studied, while only the sequence of the splice donor site, but not the architecture of the SD hairpin involving this signal is conserved in HIV-1N/O/P and SIVcpz/gor genomes. A study on the 5' leader structure in genomes of 28 different SIV lineages infecting monkeys showed that the domain closed by U5-AUG duplex can form in all these genomes. This domain mainly consists of 2 subdomains, one of which includes the signal PBS (PBS subdomain) and another contains a putative DIS hairpin (DIS subdomain). DIS subdomains contain 1-8 hairpins. None of them is similar to those in HIV-1 or SIVcpz/gor genomes. The palindrome GUGCAC was found only in SIVdrl/mnd-2, the GACGC-GCGUC duplex (Sakuragi et al., 2012) - only in SIVrcm/drl/mnd-2 and a putative 5' G-quadruplex - in SIVdeb/drl/rcm/stm genomes. In genomes of eight SIV lineages, DIS hairpin has palindrome UGCGCA. Studies on the 5' leader in 64 HIV-2 genomes of different subtypes showed, in particular, that this region has sequences of a putative 5' G-quadruplex and a putative duplex similar to the GACGC-GCGUC duplex. The secondary structures of the region encompassing DIS, SD and Psi hairpins in HIV-2 genomes of subtype B and recombinant 01_AB are similar and differ from that in genomes of subtype A.
Collapse
Affiliation(s)
- M I Zarudnaya
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
| | - A L Potyahaylo
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
| | - I M Kolomiets
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
| | - L G Gorb
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine.
| |
Collapse
|
2
|
Zarudnaya MI, Potyahaylo AL, Kolomiets IM, Gorb LG. Genome sequence analysis suggests coevolution of the DIS, SD, and Psi hairpins in HIV-1 genomes. Virus Res 2022; 321:198910. [PMID: 36070810 DOI: 10.1016/j.virusres.2022.198910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 12/24/2022]
Abstract
HIV-1 RNA dimerization is a critical step in viral life cycle. It is a prerequisite for genome packaging and plays an important role in reverse transcription and recombination. Dimerization is promoted by the DIS (dimerization initiation site) hairpin located in the 5' leader of HIV-1 genome. Despite the high genetic diversity in HIV-1 group M, only five apical loops (AAGCGCGCA, AAGUGCGCA, AAGUGCACA, AGGUGCACA and AGUGCAC) are commonly found in DIS hairpins. We refer to the parent DISes with these apical loops as DISLai, DISTrans, DISF, DISMal, and DISC, respectively. Based on identity or similarity of DIS hairpins to parent DISes, we distributed HIV-1 M genomes into five dimerization groups. Comparison of the primary and secondary structures of DIS, SD and Psi hairpins in about 3000 HIV-1 M genomes showed that the mutation frequencies at particular nucleotide positions of these hairpins differ among the dimerization groups, and DISF may be an origin of other parent DISes. We found that DIS, SD and Psi hairpins have hundreds of variants, only some of them occurring rather frequently. The lower part of DIS hairpin with G x AGG internal loop is highly conserved in both HIV-1 and SIV genomes. We supposed that the G-quadruplex, located 56 nts downstream of the Gag start codon, may participate in switching of HIV-1 leader RNA from BMH (branched multiple hairpins) to LDI (long distance interaction) conformation.
Collapse
Affiliation(s)
- Margarita I Zarudnaya
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str, Kyiv 03143, Ukraine
| | - Andriy L Potyahaylo
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str, Kyiv 03143, Ukraine
| | - Iryna M Kolomiets
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str, Kyiv 03143, Ukraine
| | - Leonid G Gorb
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str, Kyiv 03143, Ukraine.
| |
Collapse
|
3
|
Genetic variability of the U5 and downstream sequence of major HIV-1 subtypes and circulating recombinant forms. Sci Rep 2020; 10:13214. [PMID: 32764600 PMCID: PMC7411029 DOI: 10.1038/s41598-020-70083-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 07/03/2020] [Indexed: 11/08/2022] Open
Abstract
The critical role of the regulatory elements at the 5′ end of the HIV-1 genome in controlling the life cycle of HIV-1 indicates that this region significantly influences virus fitness and its biological properties. In this study, we performed a detailed characterization of strain-specific variability of sequences from the U5 to upstream of the gag gene start codon of diverse HIV-1 strains by using next-generation sequencing (NGS) techniques. Overall, we found that this region of the HIV-1 genome displayed a low degree of intra-strain variability. On the other hand, inter-strain variability was found to be as high as that reported for gag and env genes (13–17%). We observed strain-specific single point and clustered mutations in the U5, PBS, and gag leader sequences (GLS), generating potential strain-specific transcription factor binding sites (TFBS). Using an infrared gel shift assay, we demonstrated the presence of potential TFBS such as E-box in CRF22_01A, and Stat 6 in subtypes A and G, as well as in their related CRFs. The strain-specific variation found in the sequence corresponding at the RNA level to functional domains of the 5ʹ UTR, could also potentially impact the secondary/tertiary structural rearrangement of this region. Thus, the variability observed in this 5′ end of the genomic region of divergent HIV-1 strains strongly suggests that functions of this region might be affected in a strain-specific manner. Our findings provide new insights into DNA–protein interactions that regulate HIV-1 replication and the influence of strain characterization on the biology of HIV-1 infection.
Collapse
|
4
|
Zarudnaya MI, Kolomiets IM, Potyahaylo AL, Hovorun DM. Structural transitions in poly(A), poly(C), poly(U), and poly(G) and their possible biological roles. J Biomol Struct Dyn 2018; 37:2837-2866. [PMID: 30052138 DOI: 10.1080/07391102.2018.1503972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The homopolynucleotide (homo-oligonucleotide) tracts function as regulatory elements at various stages of mRNAs life cycle. Numerous cellular proteins specifically bind to these tracts. Among them are the different poly(A)-binding proteins, poly(C)-binding proteins, multifunctional fragile X mental retardation protein which binds specifically both to poly(G) and poly(U) and others. Molecular mechanisms of regulation of gene expression mediated by homopolynucleotide tracts in RNAs are not fully understood and the structural diversity of these tracts can contribute substantially to this regulation. This review summarizes current knowledge on different forms of homoribopolynucleotides, in particular, neutral and acidic forms of poly(A) and poly(C), and also biological relevance of homoribopolynucleotide (homoribo-oligonucleotide) tracts is discussed. Under physiological conditions, the acidic forms of poly(A) and poly(C) can be induced by proton transfer from acidic amino acids of proteins to adenine and cytosine bases. Finally, we present potential mechanisms for the regulation of some biological processes through the formation of intramolecular poly(A) duplexes.
Collapse
Affiliation(s)
- Margarita I Zarudnaya
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Iryna M Kolomiets
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Andriy L Potyahaylo
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Dmytro M Hovorun
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , Kyiv , Ukraine
| |
Collapse
|
5
|
Qiao Q, Yan Y, Guo J, Du S, Zhang J, Jia R, Ren H, Qiao Y, Li Q. A review on architecture of the gag-pol ribosomal frameshifting RNA in human immunodeficiency virus: a variability survey of virus genotypes. J Biomol Struct Dyn 2016; 35:1629-1653. [PMID: 27485859 DOI: 10.1080/07391102.2016.1194231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Programmed '-1' ribosomal frameshifting is necessary for expressing the pol gene overlapped from a gag of human immunodeficiency virus. A viral RNA structure that requires base pairing across the overlapping sequence region suggests a mechanism of regulating ribosome and helicase traffic during expression. To get precise roles of an element around the frameshift site, a review on architecture of the frameshifting RNA is performed in combination of reported information with augments of a representative set of 19 viral samples. In spite of a different length for the viral RNAs, a canonical comparison on the element sequence allocation is performed for viewing variability associations between virus genotypes. Additionally, recent and historical insights recognized in frameshifting regulation are looked back as for indel and single nucleotide polymorphism of RNA. As specially noted, structural changes at a frameshift site, the spacer sequence, and a three-helix junction element, as well as two Watson-Crick base pairs near a bulge and a C-G pair close a loop, are the most vital strategies for the virus frameshifting regulations. All of structural changes, which are dependent upon specific sequence variations, facilitate an elucidation about the RNA element conformation-dependent mechanism for frameshifting. These facts on disrupting base pair interactions also allow solving the problem of competition between ribosome and helicase on a same RNA template, common to single-stranded RNA viruses. In a broad perspective, each new insight of frameshifting regulation in the competition systems introduced by the RNA element construct changes will offer a compelling target for antiviral therapy.
Collapse
Affiliation(s)
- Qi Qiao
- a School of Pharmaceutical Sciences, Xiamen University , Fujian 361102 , P.R. China
| | - Yanhua Yan
- b Department of Bioscience , Luliang University , Shanxi 033001 , P.R. China
| | - Jinmei Guo
- c Department of Chemistry & Chemical Engineering , Luliang University , Shanxi 033001 , P.R. China
| | - Shuqiang Du
- c Department of Chemistry & Chemical Engineering , Luliang University , Shanxi 033001 , P.R. China
| | - Jiangtao Zhang
- b Department of Bioscience , Luliang University , Shanxi 033001 , P.R. China
| | - Ruyue Jia
- c Department of Chemistry & Chemical Engineering , Luliang University , Shanxi 033001 , P.R. China
| | - Haimin Ren
- c Department of Chemistry & Chemical Engineering , Luliang University , Shanxi 033001 , P.R. China
| | - Yuanbiao Qiao
- d Graduate Institute of Pharmaceutical Chemistry, Luliang University , Shanxi 033001 , P.R. China
| | - Qingshan Li
- e School of Pharmaceutical Sciences , Shanxi Medical University , Shanxi 030001 , P.R. China
| |
Collapse
|
6
|
Liu SR, Hu CG, Zhang JZ. Regulatory effects of cotranscriptional RNA structure formation and transitions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:562-74. [PMID: 27028291 DOI: 10.1002/wrna.1350] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 02/25/2016] [Accepted: 03/03/2016] [Indexed: 12/17/2022]
Abstract
RNAs, which play significant roles in many fundamental biological processes of life, fold into sophisticated and precise structures. RNA folding is a dynamic and intricate process, which conformation transition of coding and noncoding RNAs form the primary elements of genetic regulation. The cellular environment contains various intrinsic and extrinsic factors that potentially affect RNA folding in vivo, and experimental and theoretical evidence increasingly indicates that the highly flexible features of the RNA structure are affected by these factors, which include the flanking sequence context, physiochemical conditions, cis RNA-RNA interactions, and RNA interactions with other molecules. Furthermore, distinct RNA structures have been identified that govern almost all steps of biological processes in cells, including transcriptional activation and termination, transcriptional mutagenesis, 5'-capping, splicing, 3'-polyadenylation, mRNA export and localization, and translation. Here, we briefly summarize the dynamic and complex features of RNA folding along with a wide variety of intrinsic and extrinsic factors that affect RNA folding. We then provide several examples to elaborate RNA structure-mediated regulation at the transcriptional and posttranscriptional levels. Finally, we illustrate the regulatory roles of RNA structure and discuss advances pertaining to RNA structure in plants. WIREs RNA 2016, 7:562-574. doi: 10.1002/wrna.1350 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Sheng-Rui Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Arba M, Kartasasmita RE, Tjahjono DH. Molecular docking and dynamics simulations on the interaction of cationic porphyrin-anthraquinone hybrids with DNA G-quadruplexes. J Biomol Struct Dyn 2015; 34:427-38. [PMID: 25808513 DOI: 10.1080/07391102.2015.1033015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A series of cationic porphyrin-anthraquinone hybrids bearing either pyridine, imidazole, or pyrazole rings at the meso-positions have been investigated for their interaction with DNA G-quadruplexes by employing molecular docking and molecular dynamics simulations. Three types of DNA G-quadruplexes were utilized, which comprise parallel, antiparallel, and mixed hybrid topologies. The porphyrin hybrids have a preference to bind with parallel and mixed hybrid structures compared to the antiparallel structure. This preference arises from the end stacking of porphyrin moiety following G-stem and loop binding of anthraquinone tail, which is not found in the antiparallel due to the presence of diagonal and lateral loops that crowd the G-quartet. The binding to the antiparallel, instead, occurred with poorer affinity through both the loop and wide groove. All sites of porphyrin binding were confirmed by 6 ns molecular dynamics simulation, as well as by the negative value of the total binding free energies that were calculated using the MMPBSA method. Free energy analysis shows that the favorable contribution came from the electrostatic term, which supposedly originated from the interaction of either cationic pyridinium, pyrazole, or imidazole groups and the anionic phosphate backbone, and also from the van der Waals energy, which primarily contributed through end stacking interaction.
Collapse
Affiliation(s)
- Muhammad Arba
- a School of Pharmacy , Bandung Institute of Technology , Jalan Ganesha 10, Bandung 40132 , Indonesia.,b Department of Chemistry , Halu Oleo University , Jl. HEA Mokodompit, Kendari 93232 , Indonesia
| | - Rahmana E Kartasasmita
- a School of Pharmacy , Bandung Institute of Technology , Jalan Ganesha 10, Bandung 40132 , Indonesia
| | - Daryono H Tjahjono
- a School of Pharmacy , Bandung Institute of Technology , Jalan Ganesha 10, Bandung 40132 , Indonesia
| |
Collapse
|