1
|
Bhattacharya S, Gupta N, Dutta A, Khanra PK, Dutta R, Žiarovská J, Tzvetkov NT, Severová L, Kopecká L, Milella L, Fernández-Cusimamani E. Repurposing major metabolites of lamiaceae family as potential inhibitors of α-synuclein aggregation to alleviate neurodegenerative diseases: an in silico approach. Front Pharmacol 2025; 16:1519145. [PMID: 40308772 PMCID: PMC12041775 DOI: 10.3389/fphar.2025.1519145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Neurodegenerative disorders (NDs) are typically characterized by progressive loss of neuronal function and the deposition of misfolded proteins in the brain and peripheral organs. They are molecularly classified based on the specific proteins involved, underscoring the critical role of protein-processing systems in their pathogenesis. Alpha-synuclein (α-syn) is a neural protein that is crucial in initiating and progressing various NDs by directly or indirectly regulating other ND-associated proteins. Therefore, reducing the α-syn aggregation can be an excellent option for combating ND initiation and progression. This study presents an in silico phytochemical-based approach for discovering novel neuroprotective agents from bioactive compounds of the Lamiaceae family, highlighting the potential of computational methods such as functional networking, pathway enrichment analysis, molecular docking, and simulation in therapeutic discovery. Functional network and enrichment pathway analysis established the direct or indirect involvement of α-syn in various NDs. Furthermore, molecular docking interaction and simulation studies were conducted to screen 85 major bioactive compounds of the Lamiaceae family against the α-syn aggregation. The results showed that five compounds (α-copaene, γ-eudesmol, carnosol, cedryl acetate, and spathulenol) had a high binding affinity towards α-syn with potential inhibitory activity towards its aggregation. MD simulations validated the stability of the molecular interactions determined by molecular docking. In addition, in silico pharmacokinetic analysis underscores their potential as promising drug candidates, demonstrating excellent blood-brain barrier (BBB) permeability, bioactivity, and reduced toxicity. In summary, this study identifies the most suitable compounds for targeting the α-syn aggregation and recommends these compounds as potential therapeutic agents against various NDs, pending further in vitro and in vivo validation.
Collapse
Affiliation(s)
- Soham Bhattacharya
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Neha Gupta
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Adrish Dutta
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Pijush Kanti Khanra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ritesh Dutta
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Jana Žiarovská
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Nikolay T. Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences (BAS), Sofia, Bulgaria
| | - Lucie Severová
- Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Prague, Czechia
| | - Lenka Kopecká
- Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Prague, Czechia
| | - Luigi Milella
- Department of Science, University of Basilicata, Potenza, Italy
| | - Eloy Fernández-Cusimamani
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
2
|
Shakour N, Hoseinpoor S, Rajabian F, Azimi SG, Iranshahi M, Sadeghi-Aliabadi H, Hadizadeh F. Discovery of non-peptide GLP-1r natural agonists for enhancing coronary safety in type 2 diabetes patients. J Biomol Struct Dyn 2025; 43:3508-3525. [PMID: 38165453 DOI: 10.1080/07391102.2023.2298734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
This study explores the computational discovery of non-peptide agonists targeting the Glucagon-Like Peptide-1 Receptor (GLP-1R) to enhance the safety of major coronary outcomes in individuals affected by Type 2 Diabetes. The objective is to identify novel compounds that can activate the GLP-1R pathway without the limitations associated with peptide agonists. Type 2 diabetes mellitus (T2DM) is associated with an increased risk of cardiovascular disease (CVD) and mortality, which is attributed to the accumulation of fat in organs, including the heart. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are frequently used to manage T2DM and could potentially offer cardiovascular benefits. Therefore, this study examines non-peptide agonists of GLP-1R to improve coronary safety in type 2 diabetes patients. After rigorous assessments, two standout candidates were identified, with natural compound 12 emerging as the most promising. This study represents a notable advancement in enhancing the management of coronary outcomes among individuals with type 2 diabetes. The computational methodology employed successfully pinpointed potential GLP-1R natural agonists, providing optimism for the development of safer and more effective therapeutic interventions. Although computational methodologies have provided crucial insights, realizing the full potential of these compounds requires extensive experimental investigations, crucial in advancing therapeutic strategies for this critical patient population.
Collapse
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Hoseinpoor
- Department of Biochemistry and Biophysics, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Rajabian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sabikeh G Azimi
- Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hojjat Sadeghi-Aliabadi
- Department of Pharmaceutical Chemistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Neog N, Puzari M, Chetia P. Identification of Potential Inhibitors of Three NDM Variants of Klebsiella Species from Natural Compounds: A Molecular Docking, Molecular Dynamics Simulation and MM-PBSA Study. Curr Comput Aided Drug Des 2025; 21:142-165. [PMID: 38504567 DOI: 10.2174/0115734099294294240311061115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Klebsiella species have emerged as well-known opportunistic pathogens causing nosocomial infections with β-lactamase-mediated resistance as a prevalent antibiotic resistance mechanism. The discovery and emergence of metallo-β-lactamases, mainly new- Delhi metallo-β-lactamases (NDMs), have increased the threat and challenges in healthcare facilities. OBJECTIVES A computational screening was conducted using 570 natural compounds from Dr. Duke's Phytochemical and Ethnobotanical data to discover promising inhibitors for NDM-6, NDM-9, and NDM-23 of the Klebsiella species. METHODS Using homology modeling on the Raptor-X web server, the structures of the three NDM variants were predicted. The structures were validated using various computational tools and MD simulation for 50 ns. Lipinski - Vebers' Filter and ADMET Screening were used to screen 570 compounds, followed by docking in Biovia Discovery Studio 2019 using the CDOCKER module. GROMACS was used to simulate the compounds with the highest scores with the proteins for 50 ns. Using the MM-PBSA method and g_mmpbsa tool, binding free energies were estimated and per-residue decomposition analysis was conducted. RESULTS The three structures predicted were found stable after the 50 ns MD Simulation run. The compounds Budmunchiamine-A and Rhamnocitrin were found to have the best binding energy towards NDM-6, NDM-9, and NDM-23, respectively. From the results of MD Simulation, MM-PBSA binding free energy calculations, and per-residue decomposition analysis, the Protein-ligand complex of NDM-6 with Budmunchiamine A and NDM-9 with Rhamnocitrin was relatively more stable than the complex of NDM-23 and Rhamnocitrin. CONCLUSION The study suggests that Budmunchiamine-A and Rhamnocitrin are potential inhibitors of NDM-6 and NDM-9, respectively, and may pave a path for in-vivo and in-vitro studies in the future.
Collapse
Affiliation(s)
- Nakul Neog
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Department of Zoology, Sadiya College, Chapakhowa, Tinsukia, Assam, 786157, India
| | - Minakshi Puzari
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Pankaj Chetia
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| |
Collapse
|
4
|
Nada H, Choi Y, Kim S, Jeong KS, Meanwell NA, Lee K. New insights into protein-protein interaction modulators in drug discovery and therapeutic advance. Signal Transduct Target Ther 2024; 9:341. [PMID: 39638817 PMCID: PMC11621763 DOI: 10.1038/s41392-024-02036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/09/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to cellular signaling and transduction which marks them as attractive therapeutic drug development targets. What were once considered to be undruggable targets have become increasingly feasible due to the progress that has been made over the last two decades and the rapid technological advances. This work explores the influence of technological innovations on PPI research and development. Additionally, the diverse strategies for discovering, modulating, and characterizing PPIs and their corresponding modulators are examined with the aim of presenting a streamlined pipeline for advancing PPI-targeted therapeutics. By showcasing carefully selected case studies in PPI modulator discovery and development, we aim to illustrate the efficacy of various strategies for identifying, optimizing, and overcoming challenges associated with PPI modulator design. The valuable lessons and insights gained from the identification, optimization, and approval of PPI modulators are discussed with the aim of demonstrating that PPI modulators have transitioned beyond early-stage drug discovery and now represent a prime opportunity with significant potential. The selected examples of PPI modulators encompass those developed for cancer, inflammation and immunomodulation, as well as antiviral applications. This perspective aims to establish a foundation for the effective targeting and modulation of PPIs using PPI modulators and pave the way for future drug development.
Collapse
Affiliation(s)
- Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, USA
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sungdo Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Kwon Su Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Nicholas A Meanwell
- Baruch S. Blumberg Institute, Doylestown, PA, USA
- School of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Ernest Mario School of Pharmacy, Rutgers University New Brunswick, New Brunswick, NJ, USA
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea.
| |
Collapse
|
5
|
Guo D, Chen C, Pan Q, Sun M, Wang H, Yi Y, Xu W. Exploration of binding mechanism of whey protein isolate and proanthocyanidin: Spectroscopic analysis and molecular dynamics simulation. Food Res Int 2024; 196:115054. [PMID: 39614490 DOI: 10.1016/j.foodres.2024.115054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 12/01/2024]
Abstract
The non-covalent whey protein isolate-proanthocyanidin (WPI-PC) complex was constructed and possessed superior anti-muscle attenuation activity in our previous study. While the non-covalent binding mechanism of WPI and PC remains unclear. The interaction mechanism of whey protein isolate (WPI) and proanthocyanidin (PC) was explored using multispectral analysis and molecular dynamics (MD) simulation. The results indicated that the non-covalent binding of PC and WPI led to fluorescence quenching, causing the conformational changes and microenvironment changes of WPI. The surface hydrophobicity of WPI-PC complex was reduced by 42.36 % compared with WPI (P < 0.05). The hydrogen bond and hydrophobic interaction were involved in the interaction between WPI and PC, and hydrogen bond played a dominant role. The WPI-PC complex was irregular and showed a smaller sheet structure. The PC and WPI remained a stable binding mainly through 15 key residues, especially the energy contribution of LEU 39. Additionally, the flexibility and fluctuation of individual amino acid residues in WPI were altered after binding to PC. It is hoped that this study could provide theoretical basis for the application of WPI and PC in functional foods.
Collapse
Affiliation(s)
- Danjun Guo
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
| | - Cheng Chen
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
| | - Qingmei Pan
- Hongan County Public Inspection and Testing Center, Hongan 438400, China
| | - Meng Sun
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
| | - Hongxun Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Yi
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
| | - Wei Xu
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China.
| |
Collapse
|
6
|
Samreen S, Khan E, Ahmad IZ. Molecular docking and molecular dynamics simulation analysis of bioactive compounds of Cichorium intybus L. seed against hepatocellular carcinoma. J Biomol Struct Dyn 2024; 42:9133-9144. [PMID: 37621217 DOI: 10.1080/07391102.2023.2250465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
In this article, bioactive compounds present in Cichorium intybus L. seeds were collected from literature review and analyzed for probable remedy for hepatocellular carcinoma. Cichorium intybus L. is a traditional plant used all over the world mainly in hepatic disorders and renal diseases. This therapeutic plant has many bioactive compounds like chicoric acid, chlorogenic acid, sesquiterpne lactones, stigmasterols etc are found in seeds. Here, the target protein p53 (PDB ID: 2OCJ) which is involved in many cancerous pathways, is chosen. The preADMET study filtered out some compounds which were then subjected to molecular docking studies by Autodock tool 4.2. Afterwards, two best compounds (Esculetin and Isochlorogenic acid) were screened out on the basis of binding energy as compared to the standard compound (Doxorubicin). All these complexes were then analyzed for stability by molecular dynamics using online GROMACS tool. In the comparative simulation study, the compound Esculetin shows a stable interaction with the p53 over the 100 ns trajectory. Hepatocellular carcinoma accounts for high mortality of cancer related death worldwide. These findings suggest that these compound can be used to treat the hepatocellular carcinoma.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sadiyah Samreen
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, India
| | - Elhan Khan
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, India
| | - Iffat Zareen Ahmad
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, India
| |
Collapse
|
7
|
Bhattacharya S, Khanra PK, Dutta A, Gupta N, Aliakbar Tehrani Z, Severová L, Šrédl K, Dvořák M, Fernández-Cusimamani E. Computational Screening of T-Muurolol for an Alternative Antibacterial Solution against Staphylococcus aureus Infections: An In Silico Approach for Phytochemical-Based Drug Discovery. Int J Mol Sci 2024; 25:9650. [PMID: 39273596 PMCID: PMC11395065 DOI: 10.3390/ijms25179650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Staphylococcus aureus infections present a significant threat to the global healthcare system. The increasing resistance to existing antibiotics and their limited efficacy underscores the urgent need to identify new antibacterial agents with low toxicity to effectively combat various S. aureus infections. Hence, in this study, we have screened T-muurolol for possible interactions with several S. aureus-specific bacterial proteins to establish its potential as an alternative antibacterial agent. Based on its binding affinity and interactions with amino acids, T-muurolol was identified as a potential inhibitor of S. aureus lipase, dihydrofolate reductase, penicillin-binding protein 2a, D-Ala:D-Ala ligase, and ribosome protection proteins tetracycline resistance determinant (RPP TetM), which indicates its potentiality against S. aureus and its multi-drug-resistant strains. Also, T-muurolol exhibited good antioxidant and anti-inflammatory activity by showing strong binding interactions with flavin adenine dinucleotide (FAD)-dependent nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase, and cyclooxygenase-2. Consequently, molecular dynamics (MD) simulation and recalculating binding free energies elucidated its binding interaction stability with targeted proteins. Furthermore, quantum chemical structure analysis based on density functional theory (DFT) depicted a higher energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital (EHOMO-LUMO) with a lower chemical potential index, and moderate electrophilicity suggests its chemical hardness and stability and less polarizability and reactivity. Additionally, pharmacological parameters based on ADMET, Lipinski's rules, and bioactivity score validated it as a promising drug candidate with high activity toward ion channel modulators, nuclear receptor ligands, and enzyme inhibitors. In conclusion, the current findings suggest T-muurolol as a promising alternative antibacterial agent that might be a potential phytochemical-based drug against S. aureus. This study also suggests further clinical research before human application.
Collapse
Affiliation(s)
- Soham Bhattacharya
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 16500 Prague, Czech Republic
| | - Pijush Kanti Khanra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Adrish Dutta
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 16500 Prague, Czech Republic
| | - Neha Gupta
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 16500 Prague, Czech Republic
| | - Zahra Aliakbar Tehrani
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic
| | - Lucie Severová
- Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Karel Šrédl
- Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Marek Dvořák
- Department of Trade and Finance, Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Eloy Fernández-Cusimamani
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 16500 Prague, Czech Republic
| |
Collapse
|
8
|
Hu N, Qi W, Zhu J, Li S, Zheng M, Zhao C, Liu J. Postharvest ripening of newly harvested corn: Weakened interactions between starch and protein. Food Chem 2024; 451:139450. [PMID: 38670018 DOI: 10.1016/j.foodchem.2024.139450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
The effects of postharvest ripening of corn on the mechanisms of starch and protein interactions were investigated using molecular dynamics and several chemical substances. Sodium dodecyl sulfate (SDS) treatment all significantly affected the starch content, molecular weight of proteins, relative crystallinity, pasting characteristics and dynamic viscoelasticity in samples before and after postharvest ripening. In the corn that had not undergone postharvest ripening, there were also significant electrostatic interactions and hydrogen bonds between starch and protein. In addition, molecular dynamics had demonstrated that the forces between starch and protein in corn were mainly hydrophobic interactions, electrostatic interaction, and hydrogen bonds. Compared with zein, corn glutelin was more tightly bound to starch. The binding energy of starch to both proteins was reduced in after postharvest-ripened corn. This study laid a rationale for investigating the change mechanism of corn postharvest ripening quality and improving processing property and edible quality of corn.
Collapse
Affiliation(s)
- Nannan Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; School of Life Science, Changchun Sci-Tech University, Changchun, Jilin 130600, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Weihua Qi
- School of Life Science, Changchun Sci-Tech University, Changchun, Jilin 130600, China
| | - Jinying Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Sheng Li
- College of Food Science and Engineering, Changchun University, Changchun, Jilin 130022, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Chengbin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
9
|
Dey D, Kumar A. Unveiling the potential of recently FDA-approved drugs as quorum sensing inhibitors against P. Aeruginosa using high-performance computational techniques. J Biomol Struct Dyn 2024:1-18. [PMID: 38230441 DOI: 10.1080/07391102.2024.2304682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/07/2024] [Indexed: 01/18/2024]
Abstract
Through cell-to-cell communication, activation of efflux pumps, formation of biofilms, and other mechanisms, pseudomonas aeruginosa's quorum sensing systems (QSS), notably the lasl/las-r system, contribute a vital role in the development of anti-microbial resistance (AMR). Identifying potential drugs against these targets could have significant implications for combating pseudomonal infections. The current study aims to identify promising recently FDA-approved drugs against lasl/las-r proteins. The ligands were selected from the FDA-approved drug lists of the last 5 years. Out of 202, 78 drugs were checked for interaction with lasl/las-r protein and 4 drugs revealed top binding conformations characterized by favorable energetic profiles within the active site of the las-r protein which were further assigned for 250-ns molecular dynamics (MD) simulation. The MD analysis confirmed the dynamical stability of brexanolone and oteseconazole with las-r protein. The root mean square deviation (RMSD), radius of gyration (Rg) and solvent-accessible surface area (SASA) analysis have indicated less deviation, more compactness of protein and less exposure of protein ligand complex to its surroundings as compared to the reference ligand-protein complex. The hydroxyl group in the oteseconazole whereas hydroxyl and ketone group in the brexanolone were responsible for hydrogen bonds with the active site residue of las r ptotein as indicated by ligand-protein contacts diagram. The binding energies per residue analysis revealed TYR-47 as the most contributing amino acid residue for interaction with oteseconazole and brexanolone. The identified drugs may be potential repurposing candidates against pseudomonal infections through inhibition of las-r protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debanjan Dey
- Department of Pharmacology, Delhi Pharmaceutical Science, Research University (DPSRU), New Delhi, India
| | - Anoop Kumar
- Department of Pharmacology, Delhi Pharmaceutical Science, Research University (DPSRU), New Delhi, India
| |
Collapse
|
10
|
Liu Y, Li X, Pu Q, Fu R, Wang Z, Li Y, Li X. Innovative screening for functional improved aromatic amine derivatives: Toxicokinetics, free radical oxidation pathway and carcinogenic adverse outcome pathway. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131541. [PMID: 37146326 DOI: 10.1016/j.jhazmat.2023.131541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/08/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
Aromatic amines, one of the most widely used low-cost antioxidants in rubbers, have been regarded as pollutants with human health concerns. To overcome this problem, this study developed a systematic molecular design, screening, and performance evaluation method to design functionally improved, environmentally friendly and synthesizable aromatic amine alternatives for the first time. Nine of 33 designed aromatic amine derivatives have improved antioxidant property (lower bond dissociation energy of N-H), and their environmental and bladder carcinogenicity impacts were evaluated through toxicokinetic model and molecular dynamics simulation. The environmental fate of the designed AAs-11-8, AAs-11-16, and AAs-12-2 after antioxidation (i.e., peroxyl radicals (ROO·), hydroxyl radicals (HO·), superoxide anion radicals (O2·-) and ozonation reaction) was also analyzed. Results showed that the by-products of AAs-11-8 and AAs-12-2 have less toxicity after antioxidation. In addition, human bladder carcinogenicity of the screened alternatives was also evaluated through adverse outcome pathway. The carcinogenic mechanisms were analyzed and verified through amino acid residue distribution characteristics, 3D-QSAR and 2D-QSAR models. AAs-12-2, with high antioxidation property, low environmental impacts and carcinogenicity, was screened as the optimum alternative for 3,5-Dimethylbenzenamine. This study provided theoretical support for designing environmentally friendly and functionally improved aromatic amine alternatives from toxicity evaluation and mechanism analysis.
Collapse
Affiliation(s)
- Yajing Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Xinao Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Rui Fu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Zhonghe Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Xixi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| |
Collapse
|
11
|
Mollica L, Giachin G. Recognition Mechanisms between a Nanobody and Disordered Epitopes of the Human Prion Protein: An Integrative Molecular Dynamics Study. J Chem Inf Model 2022; 63:531-545. [PMID: 36580661 PMCID: PMC9875307 DOI: 10.1021/acs.jcim.2c01062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Immunotherapy using antibodies to target the aggregation of flexible proteins holds promise for therapeutic interventions in neurodegenerative diseases caused by protein misfolding. Prions or PrPSc, the causal agents of transmissible spongiform encephalopathies (TSE), represent a model target for immunotherapies as TSE are prototypical protein misfolding diseases. The X-ray crystal structure of the wild-type (WT) human prion protein (HuPrP) bound to a camelid antibody fragment, denoted as Nanobody 484 (Nb484), has been previously solved. Nb484 was found to inhibit prion aggregation in vitro through a unique mechanism of structural stabilization of two disordered epitopes, that is, the palindromic motif (residues 113-120) and the β2-α2 loop region (residues 164-185). The study of the structural basis for antibody recognition of flexible proteins requires appropriate sampling techniques for the identification of conformational states occurring in disordered epitopes. To elucidate the Nb484-HuPrP recognition mechanisms, here we applied molecular dynamics (MD) simulations complemented with available NMR and X-ray crystallography data collected on the WT HuPrP to describe the conformational spaces occurring on HuPrP prior to Nb484 binding. We observe the experimentally determined binding competent conformations within the ensembles of pre-existing conformational states in solution before binding. We also described the Nb484 recognition mechanisms in two HuPrP carrying a polymorphism (E219K) and a TSE-causing mutation (V210I). Our hybrid approaches allow the identification of dynamic conformational landscapes existing on HuPrP and highly characterized by molecular disorder to identify physiologically relevant and druggable transitions.
Collapse
Affiliation(s)
- Luca Mollica
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, 20090 Milan, Italy,
| | - Gabriele Giachin
- Department
of Chemical Sciences (DiSC), University
of Padua, 35131 Padova, Italy,
| |
Collapse
|
12
|
Appiah-Kubi P, Iwuchukwu EA, Soliman MES. Structure-based identification of novel scaffolds as potential HIV-1 entry inhibitors involving CCR5. J Biomol Struct Dyn 2022; 40:13115-13126. [PMID: 34569417 DOI: 10.1080/07391102.2021.1982006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
C-C chemokine receptor 5 (CCR5), which is part of the chemokine receptor family, is a member of the G protein-coupled receptor superfamily. The interactions of CCR5 with HIV-1 during viral entry position it as an effective therapeutic target for designing potent antiviral therapies. The small-molecule Maraviroc was approved by the FDA as a CCR5 drug in 2007, while clinical trials failure has characterised many of the other CCR5 inhibitors. Thus, the continual identification of potential CCR5 inhibitors is, therefore, warranted. In this study, a structure-based discovery approach has been utilised to screen and retrieved novel potential CCR5 inhibitors from the Asinex antiviral compound (∼ 8,722) database. Explicit lipid-bilayer molecular dynamics simulation, in silico physicochemical and pharmacokinetic analyses, were further performed for the top compounds. A total of 23 structurally diverse compounds with binding scores higher than Maraviroc were selected. Subsequent molecular dynamics (MD) simulations analysis of the top four compounds LAS 51495192, BDB 26405401, BDB 26419079, and LAS 34154543, maintained stability at the CCR5 binding site. Furthermore, these compounds made pertinent interactions with CCR5 residues critical for the HIV-1 gp120-V3 loop binding such as Trp86, Tyr89, Phe109, Tyr108, Glu283 and Tyr251. Additionally, the predicted in silico physicochemical and pharmacokinetic descriptors of the selected compounds were within the acceptable range for drug-likeness. The results suggest positive indications that the identified molecules may represent promising CCR5 entry inhibitors. Further structural optimisations and biochemical testing of the proposed compounds may assist in the discovery of effective HIV-1 therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Patrick Appiah-Kubi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Emmanuel Amarachi Iwuchukwu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
13
|
Liang F, Shi Y, Shi J, Cao W. Exploring the binding mechanism of pumpkin seed protein and apigenin: Spectroscopic analysis, molecular docking and molecular dynamics simulation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Korlepara DB, Vasavi CS, Jeurkar S, Pal PK, Roy S, Mehta S, Sharma S, Kumar V, Muvva C, Sridharan B, Garg A, Modee R, Bhati AP, Nayar D, Priyakumar UD. PLAS-5k: Dataset of Protein-Ligand Affinities from Molecular Dynamics for Machine Learning Applications. Sci Data 2022; 9:548. [PMID: 36071074 PMCID: PMC9451116 DOI: 10.1038/s41597-022-01631-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022] Open
Abstract
Computational methods and recently modern machine learning methods have played a key role in structure-based drug design. Though several benchmarking datasets are available for machine learning applications in virtual screening, accurate prediction of binding affinity for a protein-ligand complex remains a major challenge. New datasets that allow for the development of models for predicting binding affinities better than the state-of-the-art scoring functions are important. For the first time, we have developed a dataset, PLAS-5k comprised of 5000 protein-ligand complexes chosen from PDB database. The dataset consists of binding affinities along with energy components like electrostatic, van der Waals, polar and non-polar solvation energy calculated from molecular dynamics simulations using MMPBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) method. The calculated binding affinities outperformed docking scores and showed a good correlation with the available experimental values. The availability of energy components may enable optimization of desired components during machine learning-based drug design. Further, OnionNet model has been retrained on PLAS-5k dataset and is provided as a baseline for the prediction of binding affinities.
Collapse
Affiliation(s)
- Divya B Korlepara
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - C S Vasavi
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Shruti Jeurkar
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Pradeep Kumar Pal
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Subhajit Roy
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
- UM-DAE-Centre For Excellence In Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, India
| | - Sarvesh Mehta
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Shubham Sharma
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Vishal Kumar
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Charuvaka Muvva
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Bhuvanesh Sridharan
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Akshit Garg
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Rohit Modee
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Agastya P Bhati
- Centre for Computational Science, Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| | - Divya Nayar
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - U Deva Priyakumar
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
| |
Collapse
|
15
|
Jongkon N, Seaho B, Tayana N, Prateeptongkum S, Duangdee N, Jaiyong P. Computational Analysis and Biological Activities of Oxyresveratrol Analogues, the Putative Cyclooxygenase-2 Inhibitors. Molecules 2022; 27:molecules27072346. [PMID: 35408774 PMCID: PMC9000610 DOI: 10.3390/molecules27072346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Polyphenols are a large family of naturally occurring phytochemicals. Herein, oxyresveratrol was isolated from ethanolic crude extracts of Artocarpus lacucha Buch.-Ham., and chemically modified to derive its lipophilic analogues. Biological screening assays showed their inhibitory potency against cyclooxygenase-2 (COX-2) with very low cytotoxicity to the MRC-5 normal cell lines. At the catalytic site of COX-2, docking protocols with ChemPLP, GoldScore and AutoDock scoring functions were carried out to reveal hydrogen bonding interactions with key polar contacts and hydrophobic pi-interactions. For more accurate binding energetics, COX-2/ligand complexes at the binding region were computed in vacuo and implicit aqueous solvation using M06-2X density functional with 6-31G+(d,p) basis set. Our computational results confirmed that dihydrooxyresveratrol (4) is the putative inhibitor of human COX-2 with the highest inhibitory activity (IC50 of 11.50 ± 1.54 µM) among studied non-fluorinated analogues for further lead optimization. Selective substitution of fluorine provides a stronger binding affinity; however, lowering the cytotoxicity of a fluorinated analogue to a normal cell is challenging. The consensus among biological activities, ChemPLP docking score and the binding energies computed at the quantum mechanical level is obviously helpful for identification of oxyresveratrol analogues as a putative anti-inflammatory agent.
Collapse
Affiliation(s)
- Nathjanan Jongkon
- Department of Social and Applied Science, College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Boonwiset Seaho
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand; (B.S.); (S.P.)
| | - Ngampuk Tayana
- Drug Discovery and Development Center, Office of Advance Science and Technology, Thammasat University, Pathum Thani 12120, Thailand;
| | - Saisuree Prateeptongkum
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand; (B.S.); (S.P.)
| | - Nongnaphat Duangdee
- Drug Discovery and Development Center, Office of Advance Science and Technology, Thammasat University, Pathum Thani 12120, Thailand;
- Correspondence: (N.D.); (P.J.)
| | - Panichakorn Jaiyong
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand; (B.S.); (S.P.)
- Correspondence: (N.D.); (P.J.)
| |
Collapse
|
16
|
Adinortey CA, Kwarko GB, Koranteng R, Boison D, Obuaba I, Wilson MD, Kwofie SK. Molecular Structure-Based Screening of the Constituents of Calotropis procera Identifies Potential Inhibitors of Diabetes Mellitus Target Alpha Glucosidase. Curr Issues Mol Biol 2022; 44:963-987. [PMID: 35723349 PMCID: PMC8928985 DOI: 10.3390/cimb44020064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 01/09/2023] Open
Abstract
Diabetes mellitus is a disorder characterized by higher levels of blood glucose due to impaired insulin mechanisms. Alpha glucosidase is a critical drug target implicated in the mechanisms of diabetes mellitus and its inhibition controls hyperglycemia. Since the existing standard synthetic drugs have therapeutic limitations, it is imperative to identify new potent inhibitors of natural product origin which may slow carbohydrate digestion and absorption via alpha glucosidase. Since plant extracts from Calotropis procera have been extensively used in the treatment of diabetes mellitus, the present study used molecular docking and dynamics simulation techniques to screen its constituents against the receptor alpha glucosidase. Taraxasterol, syriogenin, isorhamnetin-3-O-robinobioside and calotoxin were identified as potential novel lead compounds with plausible binding energies of −40.2, −35.1, −34.3 and −34.3 kJ/mol against alpha glucosidase, respectively. The residues Trp481, Asp518, Leu677, Leu678 and Leu680 were identified as critical for binding and the compounds were predicted as alpha glucosidase inhibitors. Structurally similar compounds with Tanimoto coefficients greater than 0.7 were reported experimentally to be inhibitors of alpha glucosidase or antidiabetic. The structures of the molecules may serve as templates for the design of novel inhibitors and warrant in vitro assaying to corroborate their antidiabetic potential.
Collapse
Affiliation(s)
- Cynthia A. Adinortey
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast CC 033, Ghana;
| | - Gabriel B. Kwarko
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 54, Ghana;
| | - Russell Koranteng
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana;
| | - Daniel Boison
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast CC 033, Ghana; (D.B.); (I.O.)
| | - Issaka Obuaba
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast CC 033, Ghana; (D.B.); (I.O.)
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana;
| | - Samuel K. Kwofie
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 54, Ghana;
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana;
- Correspondence: ; Tel.: +233-203-797922
| |
Collapse
|
17
|
Gao J, Wang Y, Lyu B, Chen J, Chen G. Component Identification of Phenolic Acids in Cell Suspension Cultures of Saussureainvolucrata and Its Mechanism of Anti-Hepatoma Revealed by TMT Quantitative Proteomics. Foods 2021; 10:foods10102466. [PMID: 34681515 PMCID: PMC8535732 DOI: 10.3390/foods10102466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Saussurea involucrata (S. involucrata) had been reported to have anti-hepatoma function. However, the mechanism is complex and unclear. To evaluate the anti-hepatoma mechanism of S. involucrata comprehensively and make a theoretical basis for the mechanical verification of later research, we carried out this work. In this study, the total phenolic acids from S. involucrata determined by a cell suspension culture (ESPI) was mainly composed of 4,5-dicaffeoylquinic acid, according to the LC-MS analysis. BALB/c nude female mice were injected with HepG2 cells to establish an animal model of liver tumor before being divided into a control group, a low-dose group, a middle-dose group, a high-dose group, and a DDP group. Subsequently, EPSI was used as the intervention drug for mice. Biochemical indicators and differences in protein expression determined by TMT quantitative proteomics were used to resolve the mechanism after the low- (100 mg/kg), middle- (200 mg/kg), and high-dose (400 mg/kg) interventions for 24 days. The results showed that EPSI can not only limit the growth of HepG2 cells in vitro, but also can inhibit liver tumors significantly with no toxicity at high doses in vivo. Proteomics analysis revealed that the upregulated differentially expressed proteins (DE proteins) in the high-dose group were over three times that in the control group. ESPI affected the pathways significantly associated with the protein metabolic process, metabolic process, catalytic activity, hydrolase activity, proteolysis, endopeptidase activity, serine-type endopeptidase activity, etc. The treatment group showed significant differences in the pathways associated with the renin-angiotensin system, hematopoietic cell lineage, etc. In conclusion, ESPI has a significant anti-hepatoma effect and the potential mechanism was revealed.
Collapse
Affiliation(s)
- Junpeng Gao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China;
| | - Yi Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (B.L.); (J.C.)
| | - Bo Lyu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (B.L.); (J.C.)
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jian Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (B.L.); (J.C.)
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Changchun 130118, China;
- Correspondence:
| |
Collapse
|
18
|
Aarthy M, Singh SK. Interpretations on the Interaction between Protein Tyrosine Phosphatase and E7 Oncoproteins of High and Low-Risk HPV: A Computational Perception. ACS OMEGA 2021; 6:16472-16487. [PMID: 34235319 PMCID: PMC8246469 DOI: 10.1021/acsomega.1c01619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/08/2021] [Indexed: 05/17/2023]
Abstract
The most prevalent and common sexually transmitted infection is caused by human papillomavirus (HPV) among sexually active women. Numerous genotypes of HPV are available, among which the major oncoproteins E6 and E7 lead to the progression of cervical cancer. The E7 oncoprotein interacts with cytoplasmic tumor suppressor protein PTPN14, which is the key regulator of cellular growth control pathways effecting the reduction of steady-state level. Disrupting the interaction between the tumor suppressor and the oncoprotein is vital to cease the development of cancer. Hence, the mechanism of interaction between E7 and tumor suppressor is explored through protein-protein and protein-ligand binding along with the conformational stability studies. The obtained results state that the LXCXE domain of HPV E7 of high and low risks binds with the tumor suppressor protein. Also, the small molecules bind in the interface of E7-PTPN14 that disrupts the interaction between the tumor suppressor and oncoprotein. These results were further supported by the dynamics simulation stating the stability over the bounded complex and the energy maintained during postdocking as well as postdynamics calculations. These observations possess an avenue in the drug discovery that leads to further validation and also proposes a potent drug candidate to treat cervical cancer caused by HPV.
Collapse
|
19
|
Chen Q, Zhu L, Yip KM, Tang Y, Liu Y, Jiang T, Zhang J, Zhao Z, Yi T, Chen H. A hybrid platform featuring nanomagnetic ligand fishing for discovering COX-2 selective inhibitors from aerial part of Saussurea laniceps Hand.-Mazz. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113849. [PMID: 33485983 DOI: 10.1016/j.jep.2021.113849] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/27/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saussurea laniceps Hand.-Mazz. (Compositae) is a representative "snow lotus" herb well known in Chinese folk medicine to treat inflammation-related diseases such as arthritis. S. laniceps (SL) shows anti-inflammatory and analgesic potencies and contains various constituents potentially with cyclooxygenase-2 (COX-2) selective inhibition. The herb is a valuable source of natural alternatives to synthetic COX-2 selective nonsteroidal anti-inflammatory drugs, a common medication for rheumatoid arthritis (RA) and osteoarthritis (OA) reported with serious cardiovascular side effects. AIM OF THE STUDY Based on an innovative drug screening platform, this study aimed to discover safe, effective COX-2 selective inhibitors from SL. MATERIALS AND METHODS An enzyme-anchored nanomagnetic fishing assay was developed to separate COX-2 ligands from SL. Cell and animal models of cardiomyocytes, lipopolysaccharide-stimulated macrophages, rat adjuvant-induced arthritis, and anterior cruciate ligament transection-induced OA rats, were adopted to screen the single/combined ligands regarding toxicity and bioactivity levels. Molecular docking was employed to unravel binding mechanisms of the ligands towards COX-1 and COX-2. RESULTS Four COX-2 selective compounds were separated from SL using optimized COX-2-functionalized magnetic nanoparticles. All the four ligands were proved with evidently lower cardiotoxicity both in vitro and in vivo than celecoxib, a known COX-2 selective inhibitor. Two ligands, scopoletin and syringin, exhibited potent anti-arthritic activities in rat models of RA and OA by alleviating clinical statuses, immune responses, and joint pathological features; their optimum combination ratio was discovered with stronger remedial effects on rat OA than single administrations. The COX-1/2 binding modes of the two phytochemicals contributed to explain their cardiac safety and therapeutic performances. CONCLUSIONS The screened chemicals are promising to be developed as COX-2 selective inhibitors as part of treating RA and OA. The hybrid strategy for discovering therapeutic agents from SL is shown here to be efficient; it should be equally valuable for finding other active chemicals in other natural sources.
Collapse
Affiliation(s)
- Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, 999077, PR China
| | - Lin Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, 999077, PR China
| | - Ka Man Yip
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, 999077, PR China
| | - Yancheng Tang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, 999077, PR China; HKBU Institute of Research and Continuing Education (IRACE), Shenzhen, 518000, PR China
| | - Yi Liu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, 999077, PR China; HKBU Institute of Research and Continuing Education (IRACE), Shenzhen, 518000, PR China
| | - Tao Jiang
- School of Chemistry, Resources and Environment, Leshan Normal University, Leshan, 614004, PR China
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Zhongzhen Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, 999077, PR China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, 999077, PR China; HKBU Institute of Research and Continuing Education (IRACE), Shenzhen, 518000, PR China.
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, 999077, PR China.
| |
Collapse
|
20
|
Cardoso FJB, Xavier LP, Santos AV, Pereira HD, Santos LDS, Molfetta FAD. Identification of potential inhibitors of Schistosoma mansoni purine nucleoside phosphorylase from neolignan compounds using molecular modelling approaches. J Biomol Struct Dyn 2021; 40:8248-8260. [PMID: 33830889 DOI: 10.1080/07391102.2021.1910073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Schistosomiasis is a parasitic disease that is part of the neglected tropical diseases (NTDs), which cause significant levels of morbidity and mortality in millions of people throughout the world. The enzyme purine nucleoside phosphorylase from Schistosoma mansoni (SmPNP) represents a potential target for discovering new agents, and neolignans stand out as an important class of compounds. In this work, molecular modeling studies and biological assays of a set of neolignans were conducted against the PNP enzymes of the parasite and the human homologue (HssPNP). The results of the molecular docking described that the neolignans showed good complementarity by the active site of SmPNP. Molecular dynamics (MD) studies revealed that both complexes (Sm/HssPNP - neolignan compounds) were stable by analyzing the root mean square deviation (RMSD) values, and the binding free energy values suggest that the selected structures can interact and inhibit the catalytic activity of the SmPNP. Finally, the biological assay indicated that the selected neolignans presented a better molecular profile of inhibition compared to the human enzyme, as these ligands did not have the capacity to inhibit enzymatic activity, indicating that these compounds are promising candidates and that they can be used in future research in chemotherapy for schistosomiasis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fábio José Bonfim Cardoso
- Laboratório de Modelagem Molecular, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Luciana Pereira Xavier
- Laboratório de Biotecnologia de Enzimas e Biotransformação, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-PA, Brazil
| | - Agenor Valadares Santos
- Laboratório de Biotecnologia de Enzimas e Biotransformação, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-PA, Brazil
| | - Humberto D'Muniz Pereira
- Laboratório de Biologia Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos-SP, Brazil
| | - Lourivaldo da Silva Santos
- Laboratório de Síntese e Produtos Naturais, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém-PA, Brazil
| | - Fábio Alberto de Molfetta
- Laboratório de Modelagem Molecular, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
21
|
Omolabi KF, Odeniran PO, Olotu FA, S Soliman ME. A Mechanistic Probe into the Dual Inhibition of T. cruzi Glucokinase and Hexokinase in Chagas Disease Treatment - A Stone Killing Two Birds? Chem Biodivers 2021; 18:e2000863. [PMID: 33411971 DOI: 10.1002/cbdv.202000863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/07/2021] [Indexed: 01/15/2023]
Abstract
Glucokinase (GLK) and Hexokinase (HK) have been characterized as essential targets in Trypanosoma cruzi (Tc)-mediated infection. A recent study reported the propensity of the concomitant inhibition of TcGLK and TcHK by compounds GLK2-003 and GLK2-004, thereby presenting an efficient approach in Chagas disease treatment. We investigated this possibility using atomic and molecular scaling methods. Sequence alignment of TcGLK and TcHK revealed that both proteins shared approximately 33.3 % homology in their glucose/inhibitor binding sites. The total binding free energies of GLK2-003 and GLK2-004 were favorable in both proteins. PRO92 and THR185 were pivotal to the binding and stabilization of the ligands in TcGLK, likewise their conserved counterparts, PRO163 and THR237 in TcHK. Both compounds also induced a similar pattern of perturbations in both TcGLK and TcHK secondary structure. Findings from this study therefore provide insights into the underlying mechanisms of dual inhibition exhibited by the compounds. These results can pave way to discover and optimize novel dual Tc inhibitors with favorable pharmacokinetics properties eventuating in the mitigation of Chagas disease.
Collapse
Affiliation(s)
- Kehinde F Omolabi
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Paul O Odeniran
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, 200001, Nigeria
| | - Fisayo A Olotu
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| |
Collapse
|
22
|
A probable means to an end: exploring P131 pharmacophoric scaffold to identify potential inhibitors of Cryptosporidium parvum inosine monophosphate dehydrogenase. J Mol Model 2021; 27:35. [PMID: 33423140 DOI: 10.1007/s00894-020-04663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
Compound P131 has been established to inhibit Cryptosporidium parvum's inosine monophosphate dehydrogenase (CpIMPDH). Its inhibitory activity supersedes that of paromomycin, which is extensively used in treating cryptosporidiosis. Through the per-residue energy decomposition approach, crucial moieties of P131 were identified and subsequently adopted to create a pharmacophore model for virtual screening in the ZINC database. This search generated eight ADMET-compliant hits that were examined thoroughly to fit into the active site of CpIMPDH via molecular docking. Three compounds ZINC46542062, ZINC58646829, and ZINC89780094, with favorable docking scores of - 8.3 kcal/mol, - 8.2 kcal/mol, and - 7.5 kcal/mol, were selected. The potential inhibitory mechanism of these compounds was probed using molecular dynamics simulation and Molecular Mechanics Generalized Poisson Boltzmann Surface Area (MM/PBSA) analyses. Results revealed that one of the hits (ZINC46542062) exhibited a lower binding free energy of - 39.52 kcal/mol than P131, which had - 34.6 kcal/mol. Conformational perturbation induced by the binding of the identified hits to CpIMPDH was similar to P131, suggesting a similarity in inhibitory mechanisms. Also, in silico investigation of the properties of the hit compounds implied superior physicochemical properties with regards to their synthetic accessibility, lipophilicity, and number of hydrogen bond donors and acceptors in comparison with P131. ZINC46542062 was identified as a promising hit compound with the highest binding affinity to the target protein and favorable physicochemical and pharmacokinetic properties relative to P131. The identified compounds can serve as a basis for conducting further experimental investigations toward the development of anticryptosporidials, which can overcome the challenges of existing therapeutic options. Graphical abstract P131 and the identified compounds docked in the NAD+ binding site of Cryptosporidium parvum IMPDH.
Collapse
|
23
|
Omolabi KF, Agoni C, Olotu FA, Soliman MES. Molecular Basis of P131 Cryptosporidial-IMPDH Selectivity-A Structural, Dynamical and Mechanistic Stance. Cell Biochem Biophys 2020; 79:11-24. [PMID: 33058015 DOI: 10.1007/s12013-020-00950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2020] [Indexed: 01/10/2023]
Abstract
Cryptosporidiosis accounts for a surge in infant (<5 years) mortality and morbidity. To date, several drug discovery efforts have been put in place to develop effective therapeutic options against the causative parasite. Based on a recent report, P131 spares inosine monophosphate dehydrogenase (IMPDH) in a eukaryotic model (mouse IMPDH (mIMPDH)) while binding selectively to the NAD+ site in Cryptosporidium parvum (CpIMPDH). However, no structural detail exists on the underlining mechanisms of P131-CpIMPDH selective targeting till date. To this effect, we investigate the selective inhibitory dynamics of P131 in CpIMPDH relative to mIMPDH via molecular biocomputation methods. Pairwise sequence alignment revealed prominent variations at the NAD+ binding regions of both proteins that accounted for disparate P131 binding activities. The influence of these variations was further revealed by the MM/PBSA energy estimations coupled with per-residue energy decomposition which monitored the systematic binding of the compound. Furthermore, relative high-affinity interactions occurred at the CpIMPDH NAD+ site which were majorly mediated by SER22, VAL24, PRO26, SER354, GLY357, and TYR358 located on chain D. These residues are unique to the parasite IMPDH form and not in the eukaryotic protein, highlighting variations that account for preferential P131 binding. Molecular insights provided herein corroborate previous experimental reports and further underpin the basis of CpIMPDH inhibitor selectivity. Findings from this study could present attractive prospects toward the design of novel anticryptosporidials with improved selectivity and binding affinity against parasitic targets.
Collapse
Affiliation(s)
- Kehinde F Omolabi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa.
| |
Collapse
|
24
|
Chaudhary N, Aparoy P. Application of per-residue energy decomposition to identify the set of amino acids critical for in silico prediction of COX-2 inhibitory activity. Heliyon 2020; 6:e04944. [PMID: 33083581 PMCID: PMC7550918 DOI: 10.1016/j.heliyon.2020.e04944] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/31/2020] [Accepted: 09/11/2020] [Indexed: 12/29/2022] Open
Abstract
The enormous magnitude of scientific research carried out in the field of NSAIDs and cyclooxygenases (COXs) is known. They are crucial in pain management. COX-2 inhibitors have evolved over the years; from traditional NSAIDs to isoform-specific. The present study is aimed to identify a cluster of amino acids in the catalytic site whose energy contribution can better explain COX-2 inhibitory activity accurately than the binding energy of the whole protein. Initially, MD simulations (25 ns) and MM-PBSA calculations were performed for 8 diarylheterocyclic inhibitors. Per-residue energy decomposition studies were carried out to elucidate the energy contribution of each amino acid, and their correlation with COX-2 inhibitory activity was enumerated. A cluster of catalytic amino acids whose free energy sum has a high correlation with biological data was identified. The cluster of Gln178, Ser339, Tyr341, Arg499, Phe504, Val509 and Ala513 showed the correlation of -0.60. Further, the study was extended to a total of 26 COX-2 inhibitors belonging to different classes to validate the applicability of the cluster of amino acids identified. Results clearly suggest that the cluster of amino acids identified provide accurate screening method, and can be applied to predict COX-2 inhibitory activity of small molecules.
Collapse
Affiliation(s)
- Neha Chaudhary
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh, 176215, India
| | - Polamarasetty Aparoy
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh, 176215, India.,Faculty of Biology, Indian Institute of Petroleum & Energy, Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
25
|
Namera DL, Thakkar SS, Thakor P, Bhoya U, Shah A. Arylidene analogues as selective COX-2 inhibitors: synthesis, characterization, in silico and in vitro studies. J Biomol Struct Dyn 2020; 39:7150-7159. [PMID: 32795152 DOI: 10.1080/07391102.2020.1806109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pyrazole derivatives are known to be as non-steroidal anti-inflammatory drugs (NSAID). Celecoxib is the pioneer sulfonamide being pyrazole derivative COX-2 inhibitors, which used to treat pain and inflammation; they may also have a role in cancer prevention. In the present investigation, a series of arylidene analogues (NDP-4011 to NDP-4016) were synthesized by the condensation of 4-(3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-1-yl) benzenesulfonamide (I) with various substituted aromatic aldehydes in ethanol using a catalytic amount of piperidine. All the synthesized compounds were well characterized by IR, 1H NMR, 13C NMR and mass spectrometry. The cytotoxicity of synthesized compounds was tested on the NRK-52E cell line. From which NDP-4011, NDP-4012, NDP-4013, NDP-1015 and NDP-4016 were found to have higher cytotoxicity whereas NDP-4014 showed less cytotoxicity compared to Celecoxib. The in silico pharmacokinetic parameters of compounds were evaluated to check their candidature as a drug. Molecular docking was carried out on COX-2 structures, which revealed that NDP-4011 to NDP-4016 targets allosteric binding site similar to the binding mode of the selective COX inhibitor Celecoxib. Furthermore, results of in vitro COX-2 inhibition assay supports arylidene analogues as COX-2 inhibitors.
Collapse
Affiliation(s)
- Dipti L Namera
- Center of Excellence, NFDD Complex, Department of Chemistry, Saurashtra University, Rajkot, Gujarat, India
| | - Sampark S Thakkar
- P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, India
| | - Parth Thakor
- P.G. Department of Biosciences, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Umed Bhoya
- Department of Chemistry, Saurashtra University, Rajkot, Gujarat, India
| | - Anamik Shah
- Center of Excellence, NFDD Complex, Department of Chemistry, Saurashtra University, Rajkot, Gujarat, India
| |
Collapse
|
26
|
Elangovan ND, Dhanabalan AK, Gunasekaran K, Kandimalla R, Sankarganesh D. Screening of potential drug for Alzheimer's disease: a computational study with GSK-3 β inhibition through virtual screening, docking, and molecular dynamics simulation. J Biomol Struct Dyn 2020; 39:7065-7079. [PMID: 32779973 DOI: 10.1080/07391102.2020.1805362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The global impact of Alzheimer's disease (AD) necessitates intensive research to find appropriate and effective drugs. Many studies in AD suggested beta-amyloid plaques and neurofibrillary tangles-associated tau protein as the key targets for drug development. On the other hand, it is proved that triggering of Glycogen Synthase Kinase-3β (GSK-3β) also cause AD, therefore, GSK-3β is a potential drug target to combat AD. We, in this study, investigated the ability of small molecules to inhibit GSK-3β through virtual screening, Absorption, Distribution, Metabolism, and Excretion (ADME), induced-fit docking (IFD), molecular dynamics simulation, and binding free energy calculation. Besides, molecular docking was performed to reveal the binding and interaction of the ligand at the active site of GSK-3β. We found two compounds such as 6961 and 6966, which exhibited steady-state interaction with GSK-3β for 30 ns in molecular dynamics simulation. The compounds (6961 and 6966) also achieved a docking score of -9.05 kcal/mol and -8.11 kcal/mol, respectively, which is relatively higher than the GSK-3β II inhibitor (-6.73 kcal/mol). The molecular dynamics simulation revealed that the compounds have a stable state during overall simulation time, and lesser root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF) values compared with co-crystal. In conclusion, we suggest the two compounds (6966 and 6961) as potential leads that could be utilized as effective inhibitors of GSK-3β to combat AD.
Collapse
Affiliation(s)
| | | | - Krishnasamy Gunasekaran
- Center of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India.,Bioinformatics Infrastructure Facility, University of Madras, Chennai, India
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Department of Biochemistry, Kakatiya Medical College, Warangal, India
| | - Devaraj Sankarganesh
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, India.,Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
27
|
Das P, Mattaparthi VSK. Computational Investigation on the p53-MDM2 Interaction Using the Potential of Mean Force Study. ACS OMEGA 2020; 5:8449-8462. [PMID: 32337406 PMCID: PMC7178334 DOI: 10.1021/acsomega.9b03372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/26/2020] [Indexed: 05/04/2023]
Abstract
Murine double minute 2 (MDM2) proteins are found to be overproduced by many human tumors in order to inhibit the functioning of p53 molecules, a tumor suppressor protein. Thus, reactivating p53 functioning in cancer cells by disrupting p53-MDM2 interactions may offer a significant approach in cancer treatment. However, the structural characterization of the p53-MDM2 complex at the atomistic level and the mechanism of binding/unbinding of the p53-MDM2 complex still remain unclear. Therefore, we demonstrate here the probable binding (unbinding) pathway of transactivation domain 1 of p53 during the formation (dissociation) of the p53-MDM2 complex in terms of free energy as a function of reaction coordinate from the potential of mean force (PMF) study using two different force fields: ff99SB and ff99SB-ILDN. From the PMF plot, we noticed the PMF to have a minimum value at a p53-MDM2 separation of 12 Å, with a dissociation energy of 30 kcal mol-1. We also analyzed the conformational dynamics and stability of p53 as a function of its distance of separation from MDM2. The secondary structure content (helix and turns) in p53 was found to vary with its distance of separation from MDM2. The p53-MDM2 complex structure with lowest potential energy was isolated from the ensemble at the reaction coordinate corresponding to the minimum PMF value and subjected to molecular dynamics simulation to identify the interface surface area, interacting residues at the interface, and the stability of the complex. The simulation results highlight the importance of hydrogen bonds and the salt bridge between Lys94 of MDM2 and Glu17 of p53 in the stability of the p53-MDM2 complex. We also carried out the binding free energy calculations and the per residue energy decomposition analyses of the interface residues of the p53-MDM2 complex. We found that the binding affinity between MDM2 and p53 is indeed high [ΔG bind = -7.29 kcal mol-1 from molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) and ΔG bind = -53.29 kcal mol-1 from molecular mechanics/generalized borne surface area]. The total binding energy obtained using the MM/PBSA method was noticed to be closer to the experimental values (-6.4 to -9.0 kcal mol-1). The p53-MDM2 complex binding profile was observed to follow the same trend even in the duplicate simulation run and also in the simulation carried out with different force fields. We found that Lys51, Leu54, Tyr100, and Tyr104 from MDM2 and the residues Phe19, Trp23, and Leu26 from p53 provide the highest energy contributions for the p53-MDM2 interaction. Our findings highlight the prominent structural and binding characteristics of the p53-MDM2 complex that may be useful in designing potential inhibitors to disrupt the p53-MDM2 interactions.
Collapse
|
28
|
Heidarpoor Saremi L, Ebrahimi A, Lagzian M. Identification of new potential cyclooxygenase-2 inhibitors: insight from high throughput virtual screening of 18 million compounds combined with molecular dynamic simulation and quantum mechanics. J Biomol Struct Dyn 2020; 39:1717-1734. [PMID: 32122267 DOI: 10.1080/07391102.2020.1737574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cyclooxygenase isoenzymes (COX-1 and COX-2) have a critical role in inflammation, fever, and pain. In contrary to COX-1, COX-2 is specifically expressed in inflamed tissues. Because of the subtle difference between both enzyme active sites, targeting COX-2 represents an efficient strategy for the development of novel inhibitors against inflammation with fewer side effects. In order to identify potential inhibitors of COX-2, more than 18,000,000 small molecules were retrieved from the ZINC database and virtually screened against it with a gradual increase in the precision through combined multistep docking. The results were sorted according to the rank-by-rank, induced-fit docking, and MM-GBSA evaluation. Subsequently from the final hit list, two top hits along with an approved selective inhibitor (celecoxib) were further investigated by the molecular dynamics (MD) simulations. The results were indicated that ZINC16934653 and ZINC40484701 demonstrate the highest affinity for the COX-2 binding pocket. Both ligands were bound to the important active-site residues, which are necessary for the correct orientation of inhibitors inside the binding cavity. Their binding free energies were comparable to celecoxib. 100 ns MD simulation is revealed that ZINC40484701 is more preferred in comparison with ZINC16934653 and celecoxib. In addition, non-covalent interactions between the compounds and key residues located in 6 Å distance from the COX-2 binding site show similar patterns of bonding by the reduced density gradient and the independent gradient model. Therefore, ZINC40484701 can be a potential candidate for further in vitro and in vivo analysis after lead-optimization efforts.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Leily Heidarpoor Saremi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Ali Ebrahimi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Milad Lagzian
- Department of Biology, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
29
|
Coy-Barrera E. Discrimination of Naturally-Occurring 2-Arylbenzofurans as Cyclooxygenase-2 Inhibitors: Insights into the Binding Mode and Enzymatic Inhibitory Activity. Biomolecules 2020; 10:E176. [PMID: 31979339 PMCID: PMC7072606 DOI: 10.3390/biom10020176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/12/2020] [Accepted: 01/20/2020] [Indexed: 01/04/2023] Open
Abstract
2-arylbenzofuran-containing compounds are chemical entities that can be naturally produced by several organisms. A wide-range of activities is described for several compounds of this kind and they are, therefore, valuable moieties for a lead finding from nature. Although there are in-vitro data about the activity of 2-arylbenzofuran-related compounds against cyclooxygenase (COX) enzymes, the molecular level of these COX-inhibiting constituents had not been deeply explored. Thus, 58 2-arylbenzofurans were initially screened through molecular docking within the active site of nine COX-2 crystal structures. The resulting docking scores were statistically analyzed and good reproducibility and convergence were found to discriminate the best-docked compounds. Discriminated compounds exhibited the best performance in molecular dynamics simulations as well as the most-favorable binding energies and the lowest in-vitro IC50 values for COX-2 inhibition. A three-dimensional quantitative activity-structure relationship (3D-QSAR) was also demonstrated, which showed some crucial structural requirements for enhanced enzyme inhibition. Therefore, four hits are proposed as lead structures for the development of COX-2 inhibitors based on 2-arylbenzofurans in further studies.
Collapse
Affiliation(s)
- Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| |
Collapse
|
30
|
Emmanuel IA, Olotu FA, Agoni C, Soliman MES. Deciphering the 'Elixir of Life': Dynamic Perspectives into the Allosteric Modulation of Mitochondrial ATP Synthase by J147, a Novel Drug in the Treatment of Alzheimer's Disease. Chem Biodivers 2019; 16:e1900085. [PMID: 30990952 DOI: 10.1002/cbdv.201900085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022]
Abstract
The discovery of J147 represented a significant milestone in the treatment of age-related disorders, which was further augmented by the recent identification of mitochondrial ATP synthase as the therapeutic target. However, the underlying molecular events associated with the modulatory activity of J147 have remained unresolved till date. Herein, we present, for the first time, a dynamical approach to investigate the allosteric regulation of mATP synthase by J147, using a reliable human αγβ protein model. The highlight of our findings is the existence of the J147-bound protein in distinct structural associations at different MD simulation periods coupled with concurrent open↔close transitions of the β catalytic and α allosteric (ATP5A) sites as defined by Cα distances (d), TriCα (Θ) and dihedral (φ) angular parameters. Firstly, there was an initial pairing of the αγ subunits away from the β subunit followed by the formation of the 'non-catalytic' αβ pair at a distance from the γ subunit. Interestingly, J147-induced structural arrangements were accompanied by the systematic transition of the β catalytic site from a closed to an open state, while there was a concurrent transition of the allosteric site from an open αE conformation to a closed state. Consequentially, J147 reduced the structural activity of the whole αγβ complex, while the unbound system exhibited high atomistic deviations and structural flexibility. Furthermore, J147 exhibited favorable binding at the allosteric site of mATP synthase with considerable electrostatic energy contributions from Gln215, Gly217, Thr219, Asp312, Asp313, Glu371 and Arg406. These findings provide details on the possible effects of J147 on mitochondrial bioenergetics, which could facilitate the structure-based design of novel small-molecule modulators of mATP synthase in the management of Alzheimer's disease and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Iwuchukwu A Emmanuel
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| |
Collapse
|
31
|
Jonniya NA, Kar P. Investigating specificity of the anti-hypertensive inhibitor WNK463 against With-No-Lysine kinase family isoforms via multiscale simulations. J Biomol Struct Dyn 2019; 38:1306-1321. [DOI: 10.1080/07391102.2019.1602079] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Nisha A. Jonniya
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Parimal Kar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
32
|
Selvakumar R, Anantha Krishnan D, Ramakrishnan C, Velmurugan D, Gunasekaran K. Identification of novel NAD(P)H dehydrogenase [quinone] 1 antagonist using computational approaches. J Biomol Struct Dyn 2019; 38:682-696. [DOI: 10.1080/07391102.2019.1585291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rajendran Selvakumar
- CAS in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
| | | | - Chandrasekaran Ramakrishnan
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu, India
| | - Devadasan Velmurugan
- CAS in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
| | - Krishnasamy Gunasekaran
- CAS in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
- Bioinformatics Infrastructure Facility, University of Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
33
|
Hu Y, Zhou L, Zhu X, Dai D, Bao Y, Qiu Y. Pharmacophore modeling, multiple docking, and molecular dynamics studies on Wee1 kinase inhibitors. J Biomol Struct Dyn 2018; 37:2703-2715. [PMID: 30052133 DOI: 10.1080/07391102.2018.1495576] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Wee1-like protein kinase (Wee1) is a tyrosine kinase that regulates the G2 checkpoint and prevents entry into mitosis in response to DNA damage. Based on a series of signaling pathways initiated by Wee1, Wee1 has been recognized as a potential target for cancer therapy. To discover potent Wee1 inhibitors with novel scaffolds, ligand-based pharmacophore model has been built based on 101 known Wee1 inhibitors. Then the best pharmacophore model, AADRRR.340, with good partial least square (PLS) statistics (R2 = 0.9212, Q2 = 0.7457), was selected and validated. The validated model was used as a three-dimensional (3D) search query for databases virtual screening. The filtered molecules were further analyzed and refined by Lipinski's rule of 5, multiple docking procedures (high throughput virtual screening (HTVS), standard precision (SP), genetic optimization for ligand docking (GOLD), extra precision (XP), and unique quantum polarized ligand docking (QPLD)); absorption, distribution, metabolism, excretion, and toxicity (ADMET) screening; and the Prime/molecular mechanics generalized born surface area (MM-GBSA) method binding free energy calculations. Eight leads were identified as potential Wee1 inhibitors, and a 50 ns molecular dynamics (MD) simulation was carried out for top four inhibitors to predict the stability of ligand-protein complex. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) based on MD simulation and the energy contribution per residue to the binding energy were calculated. In the end, three hits with good stabilization and affinity to protein were identified. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yanqiu Hu
- a College of Chemical Engineering , Sichuan University , Chengdu , China
| | - Lu Zhou
- a College of Chemical Engineering , Sichuan University , Chengdu , China
| | - Xiaohong Zhu
- a College of Chemical Engineering , Sichuan University , Chengdu , China
| | - Duoqian Dai
- a College of Chemical Engineering , Sichuan University , Chengdu , China
| | - Yinfeng Bao
- a College of Chemical Engineering , Sichuan University , Chengdu , China
| | - Yaping Qiu
- a College of Chemical Engineering , Sichuan University , Chengdu , China
| |
Collapse
|
34
|
Pradhan S, Das P, Mattaparthi VSK. Characterizing the Binding Interactions between DNA-Binding Proteins, XPA and XPE: A Molecular Dynamics Approach. ACS OMEGA 2018; 3:15442-15454. [PMID: 31458200 PMCID: PMC6643373 DOI: 10.1021/acsomega.8b01793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/01/2018] [Indexed: 05/23/2023]
Abstract
The scaffold nature of Xeroderma pigmentosum complementation group A (XPA) protein makes it an important member of nucleotide excision repair (NER) that removes bulky DNA lesions with the help of various protein-protein interactions (PPI) and DNA-protein interactions. However, many structural insights of XPA's interaction and the binding patterns with other NER proteins are yet to be understood. Here, we have studied one such crucial PPI of XPA with another NER protein, Xeroderma pigmentosum complementation group A (XPE), by using the previously identified binding site of XPA (residues 185-226) in the Assisted Model Building With Energy Refinement force-field-mediated dynamic system. We studied the relationship between XPA185-226-XPE complex using three different docked models. The major residues observed in all of the models that were responsible for the PPI of this complex were Arg20, Arg47, Asp51, and Leu57 from XPE and the residues Leu191, Gln192, Val193, Trp194, Glu198, Glu202, Glu205, Arg207, Glu209, Gln216, and Phe219 from XPE185-226. During the simulation study, the orientation of XPA was also noted to be changed by almost 180° in models 1 and 3, which remain unchanged in model 2, indicating that XPA interacts with XPE with its N-terminal end facing downward and C-terminal end facing upward. The same was concurrent with the binding of DNA-binding domain region of XPA (aa98-239) with XPE. The N-terminal of XPE was stretched for accommodating XPA. Using the per-residue energy decomposition analysis for the interface residues of all models, the binding affinity between these proteins were found to be dependent on R20, R47, and L57 of XPE and the residues L191, V193, W194, E198, E202, E205, R207, and F219 of XPA. The net binding free energy of the XPA185-226-XPE protein complex was found to be -48.3718 kcal mol-1 for model 1, -49.09 kcal mol-1 for model 2, and -56.51 kcal mol-1 for model 3.
Collapse
|
35
|
Olotu FA, Munsamy G, Soliman MES. Does Size Really Matter? Probing the Efficacy of Structural Reduction in the Optimization of Bioderived Compounds - A Computational "Proof-of-Concept". Comput Struct Biotechnol J 2018; 16:573-586. [PMID: 30546858 PMCID: PMC6280605 DOI: 10.1016/j.csbj.2018.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 02/07/2023] Open
Abstract
Over the years, numerous synthetic approaches have been utilized in drug design to improve the pharmacological properties of naturally derived compounds and most importantly, minimize toxic effects associated with their transition to drugs. The reduction of complex bioderived compounds to simpler bioactive fragments has been identified as a viable strategy to develop lead compounds with improved activities and minimal toxicities. Although this ‘reductive’ strategy has been widely exemplified, underlying biological events remain unresolved, hence the unanswered question remains how does the fragmentation of a natural compound improve its bioactivity and reduce toxicities? Herein, using a combinatorial approach, we initialize a computational “proof-of- concept” to expound the differential pharmacological and antagonistic activities of a natural compound, Anguinomycin D, and its synthetic fragment, SB640 towards Exportin Chromosome Region Maintenance 1 (CRM1). Interestingly, our findings revealed that in comparison with the parent compound, SB640 exhibited improved pharmacological attributes, while toxicities and off-target activities were relatively minimal. Moreover, we observed that the reduced size of SB640 allowed ‘deep access’ at the Nuclear Export Signals (NES) binding groove of CRM1, which favored optimal and proximal positioning towards crucial residues while the presence of the long polyketide tail in Anguinomycin D constrained its burial at the hydrophobic groove. Furthermore, with regards to their antagonistic functions, structural inactivation (rigidity) was more pronounced in CRM1 when bound by SB640 as compared to Anguinomycin D. These findings provide essential insights that portray synthetic fragmentation of natural compounds as a feasible approach towards the discovery of potential leads in disease treatment.
Collapse
Affiliation(s)
- Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Geraldene Munsamy
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
36
|
Dowlati Beirami A, Hajimahdi Z, Zarghi A. Docking-based 3D-QSAR (CoMFA, CoMFA-RG, CoMSIA) study on hydroquinoline and thiazinan-4-one derivatives as selective COX-2 inhibitors. J Biomol Struct Dyn 2018; 37:2999-3006. [DOI: 10.1080/07391102.2018.1502687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Amirreza Dowlati Beirami
- Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Hajimahdi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Abdullahi M, Olotu FA, Soliman ME. Solving the riddle: Unraveling the mechanisms of blocking the binding of leukotoxin by therapeutic antagonists in periodontal diseases. J Cell Biochem 2018; 119:9364-9379. [PMID: 30129224 DOI: 10.1002/jcb.27254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacteria that has gained wide recognition for its causative role in the development of various immune diseases, which includes localized aggressive periodontitis. Its ability to evade host defense mechanisms is mediated by the secretion of leukotoxin (LtxA), which induces death of white blood cells (leukocytes) by specific binding to their surface-expressed leukocyte function-associated receptor (LFA-1) in its active state. Therapeutic compounds that interfere with this pathogenic process and abrogate A. actinomycetemcomitans virulence have been reported in literature. These include doxycycline, and more recently phytochemical compounds such as hamamelitanin, resveratrol, naringin, and quercetin. However, the question remains how do they work? Therefore, with the aid of computational tools, we explore the molecular mechanisms by which they possibly elicit their therapeutic functions. Molecular mechanics Poisson/Boltzmann surface area analyses revealed that these compounds bind favorably to active LFA-1 with high affinity and considerable stability, indicative of their ability to occupy the LtxA binding site (LBS) and prevent LtxA binding. The conformational transition of open LFA-1 to its closed state further describe the mechanistic activity of these compounds. In addition to notable reductions in structural mobility and flexibility, the burial of surface-exposed interactive side chains at the LBS was observed, an occurrence that could alter the complementary binding of LtxA. It is also important to mention that these occurrences were induced more prominently by the phytochemicals. We believe that these findings will enhance the scope of drug design and discovery for potent LtxA antagonists with improved activities and therapeutic efficacies in the treatment of virulent A. actinomycetemcomitans diseases.
Collapse
Affiliation(s)
- Maryam Abdullahi
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Fisayo A Olotu
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E Soliman
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
38
|
Gupta A, Chaudhary N, Aparoy P. MM-PBSA and per-residue decomposition energy studies on 7-Phenyl-imidazoquinolin-4(5H)-one derivatives: Identification of crucial site points at microsomal prostaglandin E synthase-1 (mPGES-1) active site. Int J Biol Macromol 2018; 119:352-359. [PMID: 30031079 DOI: 10.1016/j.ijbiomac.2018.07.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/29/2022]
Abstract
The huge therapeutic potential and the market share of painkillers are well-known. Due to the side effects associated with traditional NSAIDs and selective cyclooxygenase (COX-2) inhibitors, a new generation of painkillers is the need of the hour. In this regard, microsomal prostaglandin E synthase-1 (mPGES-1) offers great potential as an alternative drug target against inflammatory disorders. The present study is aimed at identifying the amino acids crucial in effective inhibitor binding at the mPGES-1 active site by performing molecular dynamics based studies on a series of 7-Phenyl-imidazoquinolin-4(5H)-one derivatives. Molecular dynamics (MD) simulations, MM-PBSA, per-residue energy decomposition and Dimensionality Reduction through Covariance matrix Transformation for Identification of Differences in dynamics (DIRECT-ID) analysis were performed to get insights into the structural details that can aid in novel drug design against mPGES-1. The high correlations of electrostatic and polar energy terms with biological activity highlight their importance and applicability in in silico screening studies. Further, per-residue energy decomposition studies revealed that Lys42, Arg52, Arg122, Pro124, Ser127, Val128 and Thr131 were contributing more towards inhibitor binding energy. The results clearly show that MM-PBSA can act as a filter in virtual screening experiments and can play major role in facilitating various mPGES-1 drug discovery studies.
Collapse
Affiliation(s)
- Ashish Gupta
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176215, India
| | - Neha Chaudhary
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176215, India
| | - Polamarasetty Aparoy
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176215, India.
| |
Collapse
|
39
|
Lawal M, Olotu FA, Soliman MES. Across the blood-brain barrier: Neurotherapeutic screening and characterization of naringenin as a novel CRMP-2 inhibitor in the treatment of Alzheimer's disease using bioinformatics and computational tools. Comput Biol Med 2018; 98:168-177. [PMID: 29860210 DOI: 10.1016/j.compbiomed.2018.05.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 11/16/2022]
Abstract
The discovery and developmental processes of CNS drugs have been limited by the inability of potential drug molecules to pass through the blood-brain barrier (BBB). This presents a significant setback in the treatment of neurodegenerative disorders such as Alzheimer's disease (AD), hence the need for compounds that can adhere strictly to the selective criteria of suitable CNS drugs. Collapsin response mediator protein-2 (CRMP-2) has been recently identified as a viable target in neurotherapeutics due to its involvement in the etiology of AD. As shown in previous studies, Naringenin (NAR), a small molecule derivative of Drynaria rhizome (DR) extract, specifically binds CRMP-2 and reduces its phosphorylation. This was shown to facilitate axonal regrowth, with improvement in cognition and learning. Herein, we report the first account of the use of cheminformatics techniques to define the CNS drug-suitability of NAR using selective criteria, coupled with the prediction of possible biological activities and toxicities. Also, we evaluated the mechanistic activity of NAR by modeling its molecular interaction with human CRMP-2 (hCRMP-2). Physicochemical analyses revealed the suitability of NAR as a CNS drug and its ability to transverse the BBB. Possible neurogenic, anti-carcinogenic and cardioprotective activities were also predicted. NAR exhibited favorable binding to CRMP-2 and formed strong bonds with active site residues, which accounts for its stabilization and affinity. Moreover, NAR induced notable conformational changes in CRMP-2, an occurrence that could possibly disrupt kinase-mediated phosphorylation. These findings will aid in the optimization of NAR and improve its neurotherapeutic activities in the treatment of AD.
Collapse
Affiliation(s)
- Maryam Lawal
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Fisayo A Olotu
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Mahmoud E S Soliman
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa.
| |
Collapse
|
40
|
Hosseini Balef SS, Chippindale AM, Irannejad H. A crystallographic and theoretical study of an (E)-2-Hydroxyiminoethanone derivative: prediction of cyclooxygenase inhibition selectivity of stilbenoids by MM-PBSA and the role of atomic charge. J Biomol Struct Dyn 2018; 37:1555-1566. [PMID: 29697018 DOI: 10.1080/07391102.2018.1462256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We recently reported that the hydroxyiminoethanone derivative, (E)-OXM, behaves as a highly selective COX-1 inhibitor (COX-1 SI = 833), and also an interesting scaffold with unique characteristics. In the current study, a comprehensive crystallographic and computational study was performed to elucidate its conformational stability and pharmacological activity. Its conformational energy was studied at the B3LYP/6-311G** level of theory and compared to the single-crystal X-ray diffraction data. In addition, computational studies of three structurally different stilbenoid derivatives used as selective COX-1 or COX-2 inhibitors were undertaken to predict their COX selectivity potentials. Flexible docking was performed for all compounds at the active site of both COX-1 and COX-2 enzymes by considering some of the key residues as flexible during the docking operation. In the next step, molecular dynamic simulation and binding free energy calculations were performed by MM-PBSA. Final results were found to be highly dependent on the atomic charges of the inhibitors and the choice of force field used to calculate the atomic charges. The binding conformation of the hydroxyiminoethanone derivative is highly correlated with the type of COX isoform inhibited. Our predictive approach can truly predict the cyclooxygenase inhibition selectivity of stilbenoid inhibitors.
Collapse
Affiliation(s)
- Seyed Sajad Hosseini Balef
- a Department of Medicinal Chemistry, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran
| | - Ann M Chippindale
- b Department of Chemistry , University of Reading , Whiteknights, Reading, Berks RG6 6AD, Reading , UK
| | - Hamid Irannejad
- a Department of Medicinal Chemistry, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran
| |
Collapse
|
41
|
Wang C, Greene D, Xiao L, Qi R, Luo R. Recent Developments and Applications of the MMPBSA Method. Front Mol Biosci 2018; 4:87. [PMID: 29367919 PMCID: PMC5768160 DOI: 10.3389/fmolb.2017.00087] [Citation(s) in RCA: 370] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022] Open
Abstract
The Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) approach has been widely applied as an efficient and reliable free energy simulation method to model molecular recognition, such as for protein-ligand binding interactions. In this review, we focus on recent developments and applications of the MMPBSA method. The methodology review covers solvation terms, the entropy term, extensions to membrane proteins and high-speed screening, and new automation toolkits. Recent applications in various important biomedical and chemical fields are also reviewed. We conclude with a few future directions aimed at making MMPBSA a more robust and efficient method.
Collapse
Affiliation(s)
- Changhao Wang
- Chemical and Materials Physics Graduate Program, University of California, Irvine, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, United States
| | - D'Artagnan Greene
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Li Xiao
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Ruxi Qi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Ray Luo
- Chemical and Materials Physics Graduate Program, University of California, Irvine, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
42
|
Marimuthu P, Singaravelu K. Deciphering the crucial residues involved in heterodimerization of Bak peptide and anti-apoptotic proteins for apoptosis. J Biomol Struct Dyn 2017; 36:1637-1648. [PMID: 28511583 DOI: 10.1080/07391102.2017.1331863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
B-cell lymphoma 2 (Bcl-2) family proteins are the central regulators of apoptosis, functioning via mitochondrial outer membrane permeabilization. The family members are involved in several stages of apoptosis regulation. The overexpression of the anti-apoptotic proteins leads to several cancer pathological conditions. This overexpression is modulated or inhibited by heterodimerization of pro-apoptotic BH3 domain or BH3-only peptides to the hydrophobic groove present at the surface of anti-apoptotic proteins. Additionally, the heterodimerization displayed differences in binding affinity profile among the pro-apoptotic peptides binding to anti-apoptotic proteins. In light of discovering the novel peptide/drug molecules that contain the potential to inhibit specific anti-apoptotic protein, it is necessary to understand the molecular basis of recognition between the protein and its binding partner (peptide or ligand) along with its binding energies. Therefore, the present work focused on deciphering the molecular basis of recognition between pro-apoptotic Bak peptide binding to different anti-apoptotic (Bcl-xL, Bfl-1, Bcl-W, Mcl-1, and Bcl-2) proteins using advanced Molecular Dynamics (MD) approach such as Molecular Mechanics-Generalized Born Solvent Accessible. The results from our investigation revealed that the predicted binding free energies showed excellent correlation with the experimental values (r2 = .95). The electrostatic (ΔGele) contributions are the major component that drives the interaction between Bak peptides and different anti-apoptotic peptides. Additionally, van der Waals (ΔGvdw) energies also play an indispensible role in determining the binding free energy. Furthermore, the decomposition analysis highlighted the comprehensive information about the energy contributions of hotspot residues involved in stabilizing the interaction between Bak peptide and different anti-apoptotic proteins.
Collapse
Affiliation(s)
- Parthiban Marimuthu
- a Structural Bioinformatics Laboratory (SBL), Faculty of Science and Engineering, Biochemistry , Åbo Akademi University , Turku , FI , 20520 , Finland.,b Department of Biology , Albany State University , 504 College Drive, Albany , GA , USA
| | - Kalaimathy Singaravelu
- c Department of Information Technology , University of Turku , Turku , FI , 20520 , Finland
| |
Collapse
|
43
|
Qiao Y, Yang Q, Song C, Chang J. Computational insights into the origin of decrease/increase in potency of N-CDPCB analogues toward FTO. J Biomol Struct Dyn 2016; 35:1758-1765. [DOI: 10.1080/07391102.2016.1193445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yan Qiao
- Department of Pathophysiology, Basic Medical College of Zhengzhou University, Zhengzhou 450001, People’s Republic of China
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Qinghua Yang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Chuanjun Song
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Junbiao Chang
- Department of Pathophysiology, Basic Medical College of Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| |
Collapse
|