1
|
Jalan A, Sangeet S, Pradhan AK, Moyon NS. Exploring the interaction of a potent anti-cancer drug Selumetinib with bovine serum albumin: Spectral and computational attributes. J Mol Recognit 2024; 37:e3084. [PMID: 38596890 DOI: 10.1002/jmr.3084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/05/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
The binding of drugs to plasma proteins determines its fate within the physiological system, hence profound understanding of its interaction within the bloodstream is important to understand its pharmacodynamics and pharmacokinetics and thereby its therapeutic potential. In this regard, our work delineates the mechanism of interaction of Selumetinib (SEL), a potent anti-cancer drug showing excellent effect against multiple solid tumors, with plasma protein bovine serum albumin (BSA), using methods such as absorption, steady-state fluorescence, time-resolved, fluorescence resonance energy transfer, Fourier transform infrared spectra (FTIR), circular dichroism (CD), synchronous and 3D-fluorescence, salt fluorescence, molecular docking and molecular dynamic simulations. The BSA fluorescence intensity was quenched with increasing concentration of SEL which indicates interactions of SEL with BSA. Stern-Volmer quenching analysis and lifetime studies indicate the involvement of dynamic quenching. However, some contributions from the static quenching mechanism could not be ruled out unambiguously. The association constant was found to be 5.34 × 105 M-1 and it has a single binding site. The Förster distance (r) indicated probable energy transmission between the BSA and SEL. The positive entropy changes and enthalpy change indicate that the main interacting forces are hydrophobic forces, also evidenced by the results of molecular modeling studies. Conformation change in protein framework was revealed from FTIR, synchronous and 3D fluorescence and CD studies. Competitive binding experiments as well as docking studies suggest that SEL attaches itself to site I (subdomain IIA) of BSA where warfarin binds. Molecular dynamic simulations indicate the stability of the SEL-BSA complex. The association energy between BSA and SEL is affected in the presence of different metals differently.
Collapse
Affiliation(s)
- Ankita Jalan
- Department of Chemistry, National Institute of Technology Silchar, Silchar, India
| | - Satyam Sangeet
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Amit Kumar Pradhan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - N Shaemningwar Moyon
- Department of Chemistry, National Institute of Technology Silchar, Silchar, India
| |
Collapse
|
2
|
Rupreo V, Luikham S, Bhattacharyya J. PROTEIN BINDING CHARACTERISTICS OF YOHIMBINE, A NATURAL INDOLE ALKALOID BASED DRUG FOR ERECTILE DYSFUNCTION. LUMINESCENCE 2022; 37:1532-1540. [PMID: 35816091 DOI: 10.1002/bio.4327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/08/2022]
Abstract
Even to this day, talking about sexual-dysfunctions largely remains a taboo. Hence less studies were recorded and fewer remedies given. Erectile dysfunction (ED) is one of the most commonly treated psychological disorders which leads to major distress, interpersonal limitation and reduces the quality of life & marriage. This study aimed to assess a plant-derived molecule, Yohimbine (Yoh, a β-carboline indole-alkaloid; often used for ED treatment) and its potential binding phenomenon with hemoglobin (Hb). Successful binding of the Yoh with Hb is evident from spectroscopic and molecular-docking results. Yoh quenched the fluorescence of Hb efficiently through static mode. The binding affinity was in the order of 105 M-1 with 1:1 stoichiometry. Thermodynamic analyses concluded that the protein-ligand association to be spontaneous and attributed by entropy-driven exothermic-binding. Non-polyelectrolytic factor was the core, dominating factor. The structural aspects have been deciphered through infra-red spectroscopy and computational-methods. The giant 3D-protein moiety was significantly perturbed through drug-binding. Hydrophobic forces and hydrogen bonding participation were stipulated by molecular modeling data. This study reveals the detailed interaction pattern and molecular mechanism of Hb-Yoh binding; correlating the structure-function relationship for the first time; therefore, holds enormous importance from the standpoint of rational and efficient drug-designing & development.
Collapse
Affiliation(s)
- Vibeizonuo Rupreo
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland, India
| | - Soching Luikham
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland, India
| | - Jhimli Bhattacharyya
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland, India
| |
Collapse
|
3
|
Gomari MM, Rostami N, Faradonbeh DR, Asemaneh HR, Esmailnia G, Arab S, Farsimadan M, Hosseini A, Dokholyan NV. Evaluation of pH change effects on the HSA folding and its drug binding characteristics, a computational biology investigation. Proteins 2022; 90:1908-1925. [DOI: 10.1002/prot.26386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Student Research Committee, Iran University of Medical Sciences Tehran Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering Arak University Arak Iran
| | - Davood Rabiei Faradonbeh
- Department of Medical Biotechnology School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Hamid Reza Asemaneh
- Polymer Research Center, Department of Chemical Engineering Razi University Kermanshah Iran
| | - Giti Esmailnia
- Department of Medical Biotechnology, Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran
| | - Shahriar Arab
- Department of Biophysics School of Biological Sciences, Tarbiat Modares University Tehran Iran
| | - Marziye Farsimadan
- Department of Biology, Faculty of Sciences University of Guilan Rasht Iran
| | - Arshad Hosseini
- Department of Medical Biotechnology, Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology Pennsylvania State University College of Medicine Hershey Pennsylvania USA
| |
Collapse
|
4
|
Bavandpour R, Rajabi M, Asghari A. Electrochemical determination of epirubicin in the presence of topotecan as essential anti-cancer compounds using paste electrode amplified with Pt/SWCNT nanocomposite and a deep eutectic solvent. CHEMOSPHERE 2022; 289:133060. [PMID: 34838830 DOI: 10.1016/j.chemosphere.2021.133060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Epirubicin (EP) and topotecan (TP) are two major anti-cancer compounds for the treatment of breast cancer with serious side effects. Hence herein, a carbon paste electrode (CPE) amplified with Pt/SWCNT nanocomposite and a deep eutectic solvent (CPE/DES/Pt-SWCNT) were proposed as an analytical tool for the monitoring of EP in the presence of TP in the real samples. Amplification of sensor was improve EP oxidation signal about 2.73 times. Under the optimized conditions, EP determined by using differential pulse voltammetry (DPV) technique with linear dynamic range of 0.001-500 μM with limit of detection (LOD) of 0.8 nM. The CPE/DES/Pt-SWCNT offered influential ability for monitoring of EP in injection and dextrose saline samples with a recovery range of 97.4%-104.9%.
Collapse
Affiliation(s)
- Razieh Bavandpour
- Department of Chemistry, Semnan University, Semnan, 2333383-193, Iran.
| | - Maryam Rajabi
- Department of Chemistry, Semnan University, Semnan, 2333383-193, Iran.
| | - Alireza Asghari
- Department of Chemistry, Semnan University, Semnan, 2333383-193, Iran
| |
Collapse
|
5
|
John R, Mathew J, Mathew A, Aravindakumar CT, Aravind UK. Probing the Role of Cu(II) Ions on Protein Aggregation Using Two Model Proteins. ACS OMEGA 2021; 6:35559-35571. [PMID: 34984287 PMCID: PMC8717569 DOI: 10.1021/acsomega.1c05119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/29/2021] [Indexed: 05/03/2023]
Abstract
Copper is an essential trace element for human biology where its metal dyshomeostasis accounts for an increased level of serum copper, which accelerates protein aggregation. Protein aggregation is a notable feature for many neurodegenerative disorders. Herein, we report an experimental study using two model proteins, bovine serum albumin (BSA) and human serum albumin (HSA), to elucidate the mechanistic pathway by which serum albumins get converted from a fully folded globular protein to a fibril and an amorphous aggregate upon interaction with copper. Steady-state fluorescence, time-resolved fluorescence studies, and Raman spectroscopy were used to monitor the unfolding of serum albumin with increasing copper concentrations. Steady-state fluorescence studies have revealed that the fluorescence quenching of BSA/HSA by Cu(II) has occurred through a static quenching mechanism, and we have evaluated both the quenching constants individually. The binding constants of BSA-Cu(II) and HSA-Cu(II) were found to be 2.42 × 104 and 0.05 × 104 M-1, respectively. Further nanoscale morphological changes of BSA mediated by oligomers to fibril and HSA to amorphous aggregate formation were studied using atomic force microscopy. This aggregation process correlates with the Stern-Volmer plots in the absence of discernible lag phase. Raman spectroscopy results obtained are in good agreement with the increase in antiparallel β-sheet structures formed during the aggregation of BSA in the presence of Cu(II) ions. However, an increase in α-helical fractions is observed for the amorphous aggregate formed from HSA.
Collapse
Affiliation(s)
- Reshmi John
- Inter
University Instrumentation Centre, Mahatma
Gandhi University, Kottayam 686560, Kerala, India
- Research
Department of Chemistry, S. B. College,
Assumption College, Changanacherry, Kottayam 686101, Kerala, India
| | - Jissy Mathew
- Research
Department of Chemistry, S. B. College,
Assumption College, Changanacherry, Kottayam 686101, Kerala, India
| | - Anu Mathew
- Sophisticated
Analytical Instrument Facility, Mahatma
Gandhi University, Kottayam 686560, Kerala, India
| | - Charuvila T. Aravindakumar
- Inter
University Instrumentation Centre, Mahatma
Gandhi University, Kottayam 686560, Kerala, India
- Sophisticated
Analytical Instrument Facility, Mahatma
Gandhi University, Kottayam 686560, Kerala, India
- School
of Environmental Sciences, Mahatma Gandhi
University, Kottayam 686560, Kerala, India
| | - Usha K. Aravind
- School
of Environmental Studies, Cochin University
of Science and Technology (CUSAT), Kochi 682022, Kerala, India
| |
Collapse
|
6
|
Ribeiro AG, Alves JEF, Soares JCS, dos Santos KL, Jacob ÍTT, da Silva Ferreira CJ, dos Santos JC, de Azevedo RDS, de Almeida SMV, de Lima MDCA. Albumin roles in developing anticancer compounds. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02748-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Beebe SJ, Celestine MJ, Bullock JL, Sandhaus S, Arca JF, Cropek DM, Ludvig TA, Foster SR, Clark JS, Beckford FA, Tano CM, Tonsel-White EA, Gurung RK, Stankavich CE, Tse-Dinh YC, Jarrett WL, Holder AA. Synthesis, characterization, DNA binding, topoisomerase inhibition, and apoptosis induction studies of a novel cobalt(III) complex with a thiosemicarbazone ligand. J Inorg Biochem 2020; 203:110907. [PMID: 31715377 PMCID: PMC7053658 DOI: 10.1016/j.jinorgbio.2019.110907] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 01/09/2023]
Abstract
In this study, 9-anthraldehyde-N(4)-methylthiosemicarbazone (MeATSC) 1 and [Co(phen)2(O2CO)]Cl·6H2O 2 (where phen = 1,10-phenanthroline) were synthesized. [Co(phen)2(O2CO)]Cl·6H2O 2 was used to produce anhydrous [Co(phen)2(H2O)2](NO3)33. Subsequently, anhydrous [Co(phen)2(H2O)2](NO3)33 was reacted with MeATSC 1 to produce [Co(phen)2(MeATSC)](NO3)3·1.5H2O·C2H5OH 4. The ligand, MeATSC 1 and all complexes were characterized by elemental analysis, FT IR, UV-visible, and multinuclear NMR (1H, 13C, and 59Co) spectroscopy, along with HRMS, and conductivity measurements, where appropriate. Interactions of MeATSC 1 and complex 4 with calf thymus DNA (ctDNA) were investigated by carrying out UV-visible spectrophotometric studies. UV-visible spectrophotometric studies revealed weak interactions between ctDNA and the analytes, MeATSC 1 and complex 4 (Kb = 8.1 × 105 and 1.6 × 104 M-1, respectively). Topoisomerase inhibition assays and cleavage studies proved that complex 4 was an efficient catalytic inhibitor of human topoisomerases I and IIα. Based upon the results obtained from the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay on 4T1-luc metastatic mammary breast cancer cells (IC50 = 34.4 ± 5.2 μM when compared to IC50 = 13.75 ± 1.08 μM for the control, cisplatin), further investigations into the molecular events initiated by exposure to complex 4 were investigated. Studies have shown that complex 4 activated both the apoptotic and autophagic signaling pathways in addition to causing dissipation of the mitochondrial membrane potential (ΔΨm). Furthermore, activation of cysteine-aspartic proteases3 (caspase 3) in a time- and concentration-dependent manner coupled with the ΔΨm, studies implicated the intrinsic apoptotic pathway as the major regulator of cell death mechanism.
Collapse
Affiliation(s)
- Stephen J Beebe
- The Frank Reidy Center for Bioelectrics, 4211 Monarch Way, Suite 300, Norfolk, VA 23529, USA
| | - Michael J Celestine
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Jimmie L Bullock
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Shayna Sandhaus
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Jessa Faye Arca
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Donald M Cropek
- U.S. Army Corps of Engineers, Construction Engineering Research Laboratory, Champaign, IL 61822, USA
| | - Tekettay A Ludvig
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Sydney R Foster
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Jasmine S Clark
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Floyd A Beckford
- The University of Virginia's College at Wise, 1 College Avenue, Wise, VA 24293, USA
| | - Criszcele M Tano
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Elizabeth A Tonsel-White
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Raj K Gurung
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Courtney E Stankavich
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - William L Jarrett
- School of Polymers and High-Performance Materials, The University of Southern Mississippi, 118 College Drive, #5050, Hattiesburg, MS 39406, USA
| | - Alvin A Holder
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA.
| |
Collapse
|
8
|
da Silva Filho FA, de Freitas Souza T, Ribeiro AG, Alves JEF, de Oliveira JF, de Lima Souza TRC, de Moura RO, do Carmo Alves de Lima M, de Carvalho Junior LB, de Almeida SMV. Topoisomerase inhibition and albumin interaction studies of acridine-thiosemicarbazone derivatives. Int J Biol Macromol 2019; 138:582-589. [PMID: 31323270 DOI: 10.1016/j.ijbiomac.2019.07.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/24/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
Abstract
In the present study, acridine-thiosemicarbazones (ATD) derivatives were tested for their interaction properties with BSA through UV-Vis absorption and fluorescence spectroscopic studies. Both hyperchromic and hypochromic effects, as well as red or blue shifts were demonstrated after the derivatives were added to the BSA. Values for the binding constant (Kb) ranged from 1.62 × 104 to 8.71 × 105 M-1 and quenching constant (KSV) from 3.46 × 102 to 7.83 × 103 M-1 indicating a good affinity to BSA protein. Complementary, two compounds were selected to assess their inhibition activity against topoisomerase IIα enzyme, of which derivative 3a presented the best result. Moreover, to evaluate protein-ligand interactions, as well as the antitopoisomerase potential of these compounds, tests of molecular modeling were performed between all compounds using the albumin and Topoisomerase IIα/DNA complex. Finally, in silico studies showed that all derivatives used in this research displayed good oral bioavailability potential.
Collapse
Affiliation(s)
- Francivaldo Araújo da Silva Filho
- Universidade de Pernambuco (UPE), campus Garanhuns, Faculdade de Ciências, Educação e Tecnologia de Garanhuns (FACETEG), Garanhuns, PE, Brazil
| | - Thais de Freitas Souza
- Universidade de Pernambuco (UPE), campus Garanhuns, Faculdade de Ciências, Educação e Tecnologia de Garanhuns (FACETEG), Garanhuns, PE, Brazil
| | - Amélia Galdino Ribeiro
- Laboratório de Química e Inovação Terapêutica (LQIT), Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Jamerson Ferreira de Oliveira
- Laboratório de Química e Inovação Terapêutica (LQIT), Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Ricardo Olímpio de Moura
- Departamento de Ciências Farmacêuticas, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba - Bodocongo, Campina Grande, PB, Brazil
| | - Maria do Carmo Alves de Lima
- Laboratório de Química e Inovação Terapêutica (LQIT), Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Sinara Mônica Vitalino de Almeida
- Universidade de Pernambuco (UPE), campus Garanhuns, Faculdade de Ciências, Educação e Tecnologia de Garanhuns (FACETEG), Garanhuns, PE, Brazil; Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
9
|
Śliwińska-Hill U, Wiglusz K. The interaction between human serum albumin and antidiabetic agent - exenatide: determination of the mechanism binding and effect on the protein conformation by fluorescence and circular dichroism techniques - Part I. J Biomol Struct Dyn 2019; 38:2267-2275. [PMID: 31232198 DOI: 10.1080/07391102.2019.1630007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The interactions between transport proteins and drugs are very important from the pharmacological point of view. In this study, using fluorescence and circular dichroism (CD) techniques, we investigated the interaction between human serum albumin (HSA) and incretin antidiabetic drug - exenatide. Moreover, the effect of common metal ions (Ca2+, Zn2+, Cr3+) on the exenatide-HSA binding - was also described. Based on the experimental data under pseudophysiological conditions, the calculated binding constant values are on the order of 104 M-1, and the constants are lower in the presence of metal ions. We observed the increase of the hydrophobicity near the tryptophan-214 residue in subdomain IIA, but almost no change in the hydrophobicity surrounding tyrosine residues. A similar effect on the tryptophan microenvironment is influenced by metal ions. The calculated thermodynamic parameters indicated that the characteristic electrostatic and hydrophobic interactions play an important role in the albumin-exenatide complexes. The CD studies showed that exenatide does not change the secondary structure of the protein but used metal ions have some impact on albumin α-helical content.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Urszula Śliwińska-Hill
- Department of Analytical Chemistry, Faculty of Pharmacy, Wrocław Medical University, Wrocław, Poland
| | - Katarzyna Wiglusz
- Department of Analytical Chemistry, Faculty of Pharmacy, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
10
|
Zhang G, Zhou Z, Xu J, Liao Y, Hu X. Groove binding between ferulic acid and calf thymus DNA: spectroscopic methodology combined with chemometrics and molecular docking studies. J Biomol Struct Dyn 2019; 38:2029-2037. [PMID: 31157597 DOI: 10.1080/07391102.2019.1624194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ferulic acid (FA), a dietary phenolic acid compound, is proved to possess numerous biological activities. Hence, this study was devoted to explore the interaction between FA and calf thymus DNA (ctDNA) by UV - vis absorption, fluorescence, circular dichroism (CD) spectroscopy combined with multivariate curve resolution-alternating least-squares (MCR - ALS) and molecular docking studies. The concentration curves and the pure spectra of compositions (FA, ctDNA and FA - ctDNA complex) were obtained by MCR - ALS approach to verify and monitor the interaction of FA with ctDNA. The groove binding mode between FA and ctDNA was confirmed by the results of melting analysis, viscosity measurements, single-stranded DNA experiments, and competitive studies. The binding constant of FA - ctDNA complex was 4.87 × 104 L mol-1 at 298 K. The values of enthalpy (ΔH°) and entropy (ΔS°) changes in the interaction were -16.24 kJ mol-1 and 35.02 J mol-1 K-1, respectively, indicating that the main binding forces were hydrogen bonds and hydrophobic interactions. The result of CD spectra suggested that a decrease in right-handed helicity of ctDNA was induced by FA and the DNA conformational transition from the B-form to the A-form. The results of docking indicated that FA binding with ctDNA in the minor groove. These findings may be conducive to understand the interaction mechanism of FA with ctDNA and the pharmacological effects of FA. Communicated by Ramaswamy H. Sarma[Formula: see text].
Collapse
Affiliation(s)
- Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhisheng Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jianjian Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yijing Liao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xing Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Nagati V, Nakkka S, Yeggoni DP, Subramanyam R. Forskolin-loaded human serum albumin nanoparticles and its biological importance. J Biomol Struct Dyn 2019; 38:1539-1550. [PMID: 31057091 DOI: 10.1080/07391102.2019.1614481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, forskolin-loaded human serum albumin nanoparticles (FR-HSANPs) were successfully prepared by incorporation and affinity-binding methods. FR-HSANPs were characterized by transmission electron microscope that most of them are circular in shape and size is around 340 nm. The drug loading was more than 88% and further sustained release profiles were observed as it is 77.5% in 24 h time. Additionally, the cytotoxicity results with HepG2 cells indicated that FR-HSANPs showed significantly higher cytotoxicity and lower cell viability as compared to free forskolin (FR). Furthermore, to understand the binding mechanism of human serum albumin (HSA) with forskolin resulted from fluorescence quenching as a static mechanism and the binding constant is 6.26 ± 0.1 × 104 M-1, indicating a strong binding affinity. Further, association and dissociation kinetics of forskolin-HSA was calculated from surface plasmon resonance spectroscopy and the binding constant found to be Kforskolin = 3.4 ± 0.24 × 104 M-1 and also fast dissociation was observed. Further, we used circular dichroism and molecular dynamics simulations to elucidate the possible structural changes including local conformational changes and rigidity of the residues of both HSA and HSA-forskolin complexes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Veerababu Nagati
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sailaja Nakkka
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
12
|
Varma N, Kukrety H, Ravi VK, Kumar S. Bacopa monnieriinhibit hen egg white lysozyme fibrillation and help in retaining its activity at acidic condition. J Biomol Struct Dyn 2019; 38:1786-1797. [DOI: 10.1080/07391102.2019.1617784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Neelakant Varma
- Laboratory of Forensic Biology and Biotechnology, Institute of Forensic Science, Gujarat Forensic Sciences University, Gandhinagar, Gujarat, India
| | - Himanshi Kukrety
- Laboratory of Forensic Biology and Biotechnology, Institute of Forensic Science, Gujarat Forensic Sciences University, Gandhinagar, Gujarat, India
| | - Vijay K. Ravi
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Satish Kumar
- Laboratory of Forensic Biology and Biotechnology, Institute of Forensic Science, Gujarat Forensic Sciences University, Gandhinagar, Gujarat, India
| |
Collapse
|
13
|
Li J, Feng H, Liu R, Ding G, Si H, He W, Sun Z. The computational and experimental studies on a 1, 2, 3-triazole compound and its special binding to three kinds of blood proteins. J Biomol Struct Dyn 2019; 38:1185-1196. [PMID: 30909827 DOI: 10.1080/07391102.2019.1598498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A newly synthesized compound, ethyl 5-phenyl-2-(p-tolyl)-2H-1, 2, 3-triazole-4-carboxylate (EPPC) may be considered as a drug candidate and was exploited to study the structural and spectral properties by using quantum chemical calculation and multiple spectroscopic techniques. The results on theoretical spectrum of EPPC were consistent with experimental spectrum in great degree. In addition, EPPC has been as a special probe and investigated on the interactions with three kinds of blood proteins including human serum albumin (HSA), human immunoglobulin (HIgG) and bovine hemoglobin (BHb) by using UV-Vis, fluorescence spectroscopy and molecular modeling, respectively. Changes in various fluorescence and UV-Vis spectra were observed upon ligand binding along with a remarkable degree of fluorescence enhancement on complex formation under physiological condition with binding constant about 105 order of magnitudes, which caused the variations of conformation and microenvironment of these proteins in aqueous solution. The obtained results from the thermodynamic parameters calculated according to the van't Hoff equation indicated that the entropy change ΔS° and enthalpy change ΔH° were found to be 0.168 KJ/mol K and 22.154 KJ/mol for EPPC-HSA system, 0.284 KJ/mol K and 54.408 KJ/mol for EPPC-HIgG system, and 0.228 KJ/mol K and 37.548 KJ/mol for EPPC-BHb system, respectively, which demonstrated that the primary binding pattern is determined by hydrophobic interaction. The results of docking and molecular dynamics simulation using three proteins crystal models revealed that EPPC could bind to three proteins well into hydrophobic cavity, which showed good consistence with the spectroscopic measurements.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jianling Li
- College of Chemical and Chemical Engineering, Hainan Normal University, Haikou, China
| | - Huajie Feng
- College of Chemical and Chemical Engineering, Hainan Normal University, Haikou, China
| | - Rongqiang Liu
- College of Chemical and Chemical Engineering, Hainan Normal University, Haikou, China
| | - Guohua Ding
- College of Chemical and Chemical Engineering, Hainan Normal University, Haikou, China
| | - Hongzong Si
- Institute for Computational Science and Engineering, Qingdao University, Qingdao, China
| | - Wenying He
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, China
| | - Zhenfan Sun
- College of Chemical and Chemical Engineering, Hainan Normal University, Haikou, China
| |
Collapse
|
14
|
Yasmeen S, Riyazuddeen, Khatun S, Abul Qais F. Characterization of interactions between cromolyn sodium and bovine serum albumin by spectroscopic, calorimetric and computational methods. J Biomol Struct Dyn 2019; 38:722-732. [DOI: 10.1080/07391102.2019.1586588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Shama Yasmeen
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Riyazuddeen
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Samima Khatun
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
15
|
Wang BL, Zhou KL, Lou YY, Pan DQ, Kou SB, Lin ZY, Shi JH. Assessment on the binding affinity between ritonavir with model transport protein: a combined multi-spectroscopic approaches with computer simulation. J Biomol Struct Dyn 2019; 38:744-755. [DOI: 10.1080/07391102.2019.1587515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Bao-Li Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Kai-Li Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yan-Yue Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Dong-Qi Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Song-Bo Kou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhen-Yi Lin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jie-Hua Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
16
|
Sun X, Bi S, Wu J, Zhao R, Shao D, Song Z. Multispectral and molecular docking investigations on the interaction of primethamine/trimethoprim with BSA/HSA. J Biomol Struct Dyn 2019; 38:934-942. [PMID: 30843766 DOI: 10.1080/07391102.2019.1588785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Primethamine (PMA) and trimethoprim (TMP) were investigated as traditional coccidiostats on the binding of bovine serum albumin (BSA) and human serum albumin (HSA) by multispectral and molecular docking techniques. The Stern-Volmer plots and time-resolved fluorescence measurement declared that PMA/TMP quenching the intrinsic fluorescence of BSA/HSA was static quenching process. The binding constants (Ka) and binding sites (n) were calculated at different temperatures. Meanwhile, thermodynamic parameters showed electrostatic forces played a leading role in the interaction of PMA/TMP with BSA/HSA. Some metal ions such as K+, Mg2+, Cu2+, Ca2+, Zn2+ and Fe3+ had no effects on the binding system. The UV-vis absorption spectra confirmed that the interaction between PMA/TMP and BSA/HSA did happen. The analyses of synchronous fluorescence, FT-IR and circular dichroism spectra illustrated that PMA/TMP changed the secondary structures of BSA/HSA. According to Förster non-radiative energy transfer theory, the binding distance between PMA/TMP and BSA/HSA was calculated. The binding location of PMA/TMP to BSA/HSA was identified as sub-domain IIA, which was further confirmed by molecular docking.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaoyue Sun
- College of Chemistry, Changchun Normal University, Changchun, China
| | - Shuyun Bi
- College of Chemistry, Changchun Normal University, Changchun, China
| | - Jun Wu
- College of Chemistry, Changchun Normal University, Changchun, China
| | - Rui Zhao
- College of Chemistry, Changchun Normal University, Changchun, China
| | - Di Shao
- College of Chemistry, Changchun Normal University, Changchun, China
| | - Zhe Song
- College of Chemistry, Changchun Normal University, Changchun, China
| |
Collapse
|
17
|
Seal P, Sikdar J, Ghosh N, Biswas P, Haldar R. Exploring the binding dynamics of etoricoxib with human hemoglobin: A spectroscopic, calorimetric, and molecular modeling approach. J Biomol Struct Dyn 2018; 37:3018-3028. [DOI: 10.1080/07391102.2018.1508369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Paromita Seal
- Department of Physiology, University Colleges of Science and Technology, University of Calcutta, Kolkata, India
| | - Jyotirmoy Sikdar
- Department of Physiology, University Colleges of Science and Technology, University of Calcutta, Kolkata, India
| | - Niladri Ghosh
- Department of Physiology, University Colleges of Science and Technology, University of Calcutta, Kolkata, India
| | - Payel Biswas
- Department of Physiology, University Colleges of Science and Technology, University of Calcutta, Kolkata, India
| | - Rajen Haldar
- Department of Physiology, University Colleges of Science and Technology, University of Calcutta, Kolkata, India
| |
Collapse
|
18
|
Baruah P, Basumatary G, Yesylevskyy SO, Aguan K, Bez G, Mitra S. Novel coumarin derivatives as potent acetylcholinesterase inhibitors: insight into efficacy, mode and site of inhibition. J Biomol Struct Dyn 2018; 37:1750-1765. [DOI: 10.1080/07391102.2018.1465853] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Prayasee Baruah
- Centre for Advanced Studies in Chemistry and Department of Biotechnology & Bioinformatics, North-Eastern Hill University , Shillong, India
| | - Grace Basumatary
- Centre for Advanced Studies in Chemistry and Department of Biotechnology & Bioinformatics, North-Eastern Hill University , Shillong, India
| | - Semen O. Yesylevskyy
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine , Kyiv, Ukraine
| | - Kripamoy Aguan
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine , Kyiv, Ukraine
| | - Ghanashyam Bez
- Centre for Advanced Studies in Chemistry and Department of Biotechnology & Bioinformatics, North-Eastern Hill University , Shillong, India
| | - Sivaprasad Mitra
- Centre for Advanced Studies in Chemistry and Department of Biotechnology & Bioinformatics, North-Eastern Hill University , Shillong, India
| |
Collapse
|