1
|
Mondal A, Manivannan V. A naphthyl appended ninhydrin based colorimetric chemosensor for Cu 2+ ion: Detection of cysteine and ATP. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124734. [PMID: 38986255 DOI: 10.1016/j.saa.2024.124734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
A ninhydrin-based colorimetric chemosensor (LH) was synthesized using 3-hydroxy-2-naphthoic hydrazide and 11H-indeno[1,2-b]quinoxalin-11-one. It was characterized by spectroscopic and single crystal X-ray diffraction techniques. In a semi-aqueous (MeOH/HEPES) system, LH displayed a characteristic chromogenic change from colorless to yellow upon adding Cu2+ ion, with the appearance of a new peak at λmax = 460 nm. A 1:1 binding stoichiometry between LH and Cu2+ ion has been found, with LOD = 2.3 μM (145 ppb) and LOQ = 8 μM (504 ppb). Based on experimental results the formula of [Cu(L)Cl(H2O)2] (1) was assigned and this in-situ generated 1 was found to exhibit a discoloration of upon gradual addition of cysteine (LOD = 60 nM) as well as ATP (LOD = 130 nM) having 1:2 and 1:1 stoichiometry respectively. The LH was useful for recognition of Cu2+ ion in real water samples and on filter paper strips. A two-input-two-output logic gate circuitry was also constructed by employing 1 and cysteine. The DFT/TDDFT calculations performed on LH and 1 were consistent with experimental findings. The binding affinity of LH towards HSA and BSA were determined with HSA having greater affinity than BSA, which was also supported by theoretical calculations.
Collapse
Affiliation(s)
- Anisha Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Vadivelu Manivannan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
2
|
Gurusamy S, Sankarganesh M, Nandini Asha R, Mathavan A. Biologically active oxovanadium(IV) Schiff base metal complex: antibacterial, antioxidant, biomolecular interaction and molecular docking studies. J Biomol Struct Dyn 2023; 41:599-610. [PMID: 34889705 DOI: 10.1080/07391102.2021.2009916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The oxovanadium(IV) Schiff base metal complex (ISNPV) have been synthesized as well as characterized by using micro analytical and traditional spectroscopic techniques. The spectral findings were utilized to validate the formation of ISNPV with structure exhibited square pyramidal geometry. The in vitro antibacterial activities of ISNPV were investigated to five different bacterial stains such as S. aureus, S. epidermidis, B. cereus, B. amyloliquefaciens and B. subtilis. The obtained result have suggested that the ISNPV has highest antibacterial activity against S. aureus than the other bacterial stains. The in vitro antioxidant activity like DPPH free radical scavenging assay method was studied by ISNPV in DMSO medium. Because it scavenges all free radicals, the ISNPV possesses higher antioxidant activity than the free ligand. UV-visible absorption and emission spectral techniques were used to investigate the binding of CT-DNA to the ISNPV. Both the spectral data indicate that the ISNPV binds the double helix structure of CT-DNA via an intercalation mode. Additionally, investigate the interactions of ISNPV with the protein molecules like BSA/HAS has been investigated using absorption and emission techniques. The absorption intensity of metal complex increases as well as the emission intensity of protein molecules ability decreases due to the binding nature of ISNPV with BSA/HSA protein molecules. The binding nature of ISNPV with bio molecules such as CT-DNA, BSA and HSA was also validated using molecular docking approach.
Collapse
Affiliation(s)
- Shunmugasundaram Gurusamy
- Department of Chemistry, V.O. Chidambaram College, Tuticorin, Tamil Nadu, India.,Affiliated to Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India
| | - Murugesan Sankarganesh
- Department of Chemistry, Saveetha School of Engineeing, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamilnadu, India
| | | | - Alagarsamy Mathavan
- Department of Chemistry, V.O. Chidambaram College, Tuticorin, Tamil Nadu, India
| |
Collapse
|
3
|
A novel colorimetric, selective fluorescent “turn-off” chemosensor and biomolecules binding studies based on iodosalicylimine schiff-base derivative. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
Abyar F, Novak I. Electronic structure analysis of riboflavin: OVGF and EOM-CCSD study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120268. [PMID: 34450573 DOI: 10.1016/j.saa.2021.120268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The computational simulation of the photoelectron spectrum of active form of vitamin B2 is reported in the gas phase. In this work, we determine relative stability of eight riboflavin conformers by conformational search first with molecular mechanics AMMP potential in VEGA software at 553 K. Relative abundance of conformers was deduced from Boltzmann population weighting method (BPW). The three most stable conformers were then selected for computing valence, vertical ionization energies. We used high-level Equation-of-Motion Coupled-Cluster (EOM-IP-CCSD) method to obtain valence ionization energies (IP). In order to characterize the nature of ionization processes pertaining to different spectral bands, natural bonding orbital (NBO) method and molecular electrostatic potentials (MEP) were used to obtain orbital electron densities. The influence of the electronic structure of riboflavin on its biological activity is manifested via reduction of ionization energies of outermost orbitals which makes electron densities of these orbitals more readily available to participate in ligand-receptor bonding.
Collapse
Affiliation(s)
- Fatemeh Abyar
- Department of Chemical Engineering, Faculty of Engineering, Ardakan University, P.O. Box 184, Ardakan, Iran.
| | - Igor Novak
- Charles Sturt University, POB 883, Orange, NSW 2800, Australia.
| |
Collapse
|
5
|
Gurusamy S, Krishnaveni K, Sankarganesh M, Nandini Asha R, Mathavan A. Synthesis, characterization, DNA interaction, BSA/HSA binding activities of VO(IV), Cu(II) and Zn(II) Schiff base complexes and its molecular docking with biomolecules. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Shahabadi N, Zendehcheshm S. Interaction of human hemoglobin (HHb) and cytochrome c (Cyt c) with biogenic chloroxine-conjugated silver nanoflowers: spectroscopic and molecular docking approaches. J Biomol Struct Dyn 2021; 40:8913-8924. [PMID: 33928842 DOI: 10.1080/07391102.2021.1919555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this research, the biological activity of the antibacterial drug Chloroxine-conjugated biogenic AgNPs (COX-AgNPs) was investigated in simulated physiological conditions (pH = 7.40). Different spectroscopic methods such as UV-visible, fluorescence, and circular dichroism spectroscopic and docking simulation were employed to evaluate the structural changes in the most important blood proteins (human hemoglobin (HHb) and Cytochrome c (Cyt c)) in the presence of COX-AgNPs. The results showed that the COX-AgNPs can bind to HHb and Cyt c and the secondary structure of these proteins remains unchanged, which is crucial in providing insights into the side effects of newly synthesized drugs on their carriers.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran.,Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saba Zendehcheshm
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran.,Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Naso LG, Martínez VR, Ferrer EG, Williams PAM. Antimetastatic effects of VOflavonoid complexes on A549 cell line. J Trace Elem Med Biol 2021; 64:126690. [PMID: 33260045 DOI: 10.1016/j.jtemb.2020.126690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/12/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) is the most frequent type of lung cancer and more than 90 % of mortality is due to metastasis-related deaths. Flavonoids are considered nutraceuticals due to the variety of pharmacological properties. In this paper, we studied the effects of baicalin, silibinin, apigenin, luteolin, and its oxidovanadium(IV) cation complexes on the viability, adhesion to fibronectin, invasion, and migration on human lung cancer cell line A549. In addition, in order to complete the study of the interaction of VOflavonoids and bovine serum albumin (BSA), the binding ability of silibinin and VOsil to the protein was evaluated. METHOD To establish the non-cytotoxic concentration range of the tested compounds, the cancer cell viability was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Cell migration and invasion assays were performed using Boyden chambers and adhesion assay using MTT method. The interaction of compounds with BSA were investigated in physiological buffer (pH = 7.4) by fluorescence spectroscopy. RESULTS All complexes inhibited the metastatic cascade steps to a greater extent than their respective ligands. Likewise, based on binding constant values (Kb) for BSA-silibinin and BSA-VOsil, we can suggest that both compounds can interact with the protein. CONCLUSION Although all the complexes suppressed cell adhesion, invasion and migration, VOlut can be considered as a good candidate to continue the trials because it presented encouraging results as a potential antitumor and antimetastatic agent, and can be transported by BSA.
Collapse
Affiliation(s)
- Luciana G Naso
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465, 1900 La Plata, Argentina.
| | - Valeria R Martínez
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465, 1900 La Plata, Argentina
| | - Evelina G Ferrer
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465, 1900 La Plata, Argentina
| | - Patricia A M Williams
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465, 1900 La Plata, Argentina
| |
Collapse
|
8
|
Farooqi SI, Arshad N, Channar PA, Perveen F, Saeed A, Larik FA, Javed A, Yamin M. New aryl Schiff bases of thiadiazole derivative of ibuprofen as DNA binders and potential anticancer drug candidates. J Biomol Struct Dyn 2020; 39:3548-3564. [PMID: 32397836 DOI: 10.1080/07391102.2020.1766569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The work presented in this paper describes the synthesis of two new aryl Schiff bases [(E)-N-(4-(benzyloxy)-3-methoxybenzylidene)-5-(1-(4-isobutylphenyl)ethyl)-1,3,4-thiadiazol-2-amine] (ASB-1) and [(E)-N-(4-(benzyloxy)benzylidene)-5-(1-(4-isobutylphenyl)ethyl)-1,3,4-thiadiazol-2-amine] (ASB-2). These compounds were characterized by different analytical techniques and then studied for DNA binding. Binding studies were carried out at neutral pH (7.0) and at 37 °C by theoretical and experimental methods including DFT, molecular docking, spectroscopy (UV-visible, fluorescence), cyclic voltammetry (CV) and viscometry. Further investigations of these compounds were done on hepatocellular carcinoma; Huh-7 cancer cell line. Binding constant, free energy change and binding site size, i.e. Kb, ΔG and n were evaluated which indicated that both ASB-1 and ASB-2 bind significantly and spontaneously with the DNA. However, data revealed relatively greater binding of ASB-1 with DNA. Spectral and voltammetric results were found supportive of each other. Binding site sizes and viscosity measurements verified the mixed binding mode of interactions as observed in molecular docking analysis, i.e. intercalation with groove binding. DNA binding studies were very well correlated with the in-vitro studies performed on Huh-7 cell line as well as normal HEK-293 cell lines. The compound ASB-1 not only showed greater binding affinity toward DNA but also showed greater anticancer potency with least IC50 value as compared to ASB-2.
Collapse
Affiliation(s)
| | - Nasima Arshad
- Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan
| | | | - Fouzia Perveen
- Research Center for Modeling and Simulations, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fayaz Ali Larik
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aneela Javed
- Healthcare Biotechnology Atta-ur-Rehman School of Applied Biosciences, National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Maham Yamin
- Healthcare Biotechnology Atta-ur-Rehman School of Applied Biosciences, National University of Science and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
9
|
Biswal D, Pramanik NR, Drew MGB, Jangra N, Maurya MR, Kundu M, Sil PC, Chakrabarti S. Synthesis, crystal structure, DFT calculations, protein interaction, anticancer potential and bromoperoxidase mimicking activity of oxidoalkoxidovanadium( v) complexes. NEW J CHEM 2019; 43:17783-17800. [DOI: 10.1039/c9nj02471a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Intriguing structure–activity relationships (SARs) indicating an apparent dependence of anticancer and haloperoxidase activities on the carbon chain length of the alkoxo group.
Collapse
Affiliation(s)
- Debanjana Biswal
- Department of Chemistry
- University College of Science
- Kolkata 700009
- India
| | | | | | - Nancy Jangra
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Mannar R. Maurya
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Mousumi Kundu
- Division of Molecular Medicine
- Bose Institute
- Kolkata 700054
- India
| | - Parames C. Sil
- Division of Molecular Medicine
- Bose Institute
- Kolkata 700054
- India
| | | |
Collapse
|