1
|
Agić D, Karnaš M, Tomić S, Komar M, Karačić Z, Rastija V, Bešlo D, Šubarić D, Molnar M. Experimental and computational evaluation of dipeptidyl peptidase III inhibitors based on quinazolinone-Schiff's bases. J Biomol Struct Dyn 2023; 41:7567-7581. [PMID: 36106968 DOI: 10.1080/07391102.2022.2123044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
Dipeptidyl peptidase III (DPP III) is a zinc-dependent enzyme that sequentially hydrolyzes biologically active peptides by cleaving dipeptides from their N-termini. Although its fundamental role is not been fully elucidated, human DPP III (hDPP III) has been recognized in several pathophysiological processes of interest for drug development. In this article 27 quinazolinone-Schiff's bases were studied for their inhibitory activity against hDPP III combining an in vitro experiment with a computational approach. The biochemical assay showed that most compounds exhibited inhibitory activity at the 100 μM concentration. The best QSAR model included descriptors from the following 2D descriptor groups: information content indices, 2D autocorrelations, and edge adjacency indices. Five compounds were found to be the most potent inhibitors with IC50 values below 10 µM, while molecular docking predicted that these compounds bind to the central enzyme cleft and interact with residues of the substrate binding subsites. Molecular dynamics simulations of the most potent inhibitor (IC50=0.96 µM) provided valuable information explaining the role of PHE109, ARG319, GLU327, GLU329, and ILE386 in the mechanism of the inhibitor binding and stabilization. This is the first study that gives insight into quinazolinone-Schiff's bases binding to this metalloenzyme.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dejan Agić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Maja Karnaš
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Sanja Tomić
- Divison of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Mario Komar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Zrinka Karačić
- Divison of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Vesna Rastija
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Drago Bešlo
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Domagoj Šubarić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Maja Molnar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
2
|
Survey of Dipeptidyl Peptidase III Inhibitors: From Small Molecules of Microbial or Synthetic Origin to Aprotinin. Molecules 2022; 27:molecules27093006. [PMID: 35566358 PMCID: PMC9101112 DOI: 10.3390/molecules27093006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Dipeptidyl peptidase III (DPP III) was originally thought to be a housekeeping enzyme that contributes to intracellular peptide catabolism. More specific roles for this cytosolic metallopeptidase, in the renin-angiotensin system and oxidative stress regulation, were confirmed, or recognized, only recently. To prove indicated (patho)physiological functions of DPP III in cancer progression, cataract formation and endogenous pain modulation, or to reveal new ones, selective and potent inhibitors are needed. This review encompasses natural and synthetic compounds with experimentally proven inhibitory activity toward mammalian DPP III. Except for the polypeptide aprotinin, all others are small molecules and include flavonoids, coumarin and benzimidazole derivatives. Presented are current strategies for the discovery or development of DPP III inhibitors, and mechanisms of inhibitory actions. The most potent inhibitors yet reported (propioxatin A and B, Tyr-Phe- and Phe-Phe-NHOH, and JMV-390) are active in low nanomolar range and contain hydroxamic acid moiety. High inhibitory potential possesses oligopeptides from the hemorphin group, valorphin and tynorphin, which are poor substrates of DPP III. The crystal structure of human DPP III-tynorphin complex enabled the design of the transition-state peptidomimetics inhibitors, effective in low micromolar concentrations. A new direction in the field is the development of fluorescent inhibitor for monitoring DPP III activity.
Collapse
|
3
|
Ban Ž, Karačić Z, Tomić S, Amini H, Marder TB, Piantanida I. Triarylborane Dyes as a Novel Non-Covalent and Non-Inhibitive Fluorimetric Markers for DPP III Enzyme. Molecules 2021; 26:molecules26164816. [PMID: 34443404 PMCID: PMC8398983 DOI: 10.3390/molecules26164816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
Novel dyes were prepared by simple "click CuAAC" attachment of a triarylborane-alkyne to the azide side chain of an amino acid yielding triarylborane dye 1 which was conjugated with pyrene (dye 2) forming a triarylborane-pyrene FRET pair. In contrast to previous cationic triarylboranes, the novel neutral dyes interact only with proteins, while their affinity to DNA/RNA is completely abolished. Both the reference triarylborane amino acid and triarylborane-pyrene conjugate bind to BSA and the hDPP III enzyme with high affinities, exhibiting a strong (up to 100-fold) fluorescence increase, whereby the triarylborane-pyrene conjugate additionally retained FRET upon binding to the protein. Furthermore, the triarylborane dyes, upon binding to the hDPP III enzyme, did not impair its enzymatic activity under a wide range of experimental conditions, thus being the first non-covalent fluorimetric markers for hDPP III, also applicable during enzymatic reactions with hDPP III substrates.
Collapse
Affiliation(s)
- Željka Ban
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, P.O. Box 180, HR-10002 Zagreb, Croatia; (Ž.B.); (Z.K.)
| | - Zrinka Karačić
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, P.O. Box 180, HR-10002 Zagreb, Croatia; (Ž.B.); (Z.K.)
| | - Sanja Tomić
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, P.O. Box 180, HR-10002 Zagreb, Croatia; (Ž.B.); (Z.K.)
- Correspondence: (S.T.); (I.P.); Tel.: +385-1-4571-251 (S.T.); +385-1-4571-326 (I.P.)
| | - Hashem Amini
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany; (H.A.); (T.B.M.)
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany; (H.A.); (T.B.M.)
| | - Ivo Piantanida
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, P.O. Box 180, HR-10002 Zagreb, Croatia; (Ž.B.); (Z.K.)
- Correspondence: (S.T.); (I.P.); Tel.: +385-1-4571-251 (S.T.); +385-1-4571-326 (I.P.)
| |
Collapse
|
4
|
Agić D, Karnaš M, Šubarić D, Lončarić M, Tomić S, Karačić Z, Bešlo D, Rastija V, Molnar M, Popović BM, Lisjak M. Coumarin Derivatives Act as Novel Inhibitors of Human Dipeptidyl Peptidase III: Combined In Vitro and In Silico Study. Pharmaceuticals (Basel) 2021; 14:ph14060540. [PMID: 34198854 PMCID: PMC8229952 DOI: 10.3390/ph14060540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 01/19/2023] Open
Abstract
Dipeptidyl peptidase III (DPP III), a zinc-dependent exopeptidase, is a member of the metalloproteinase family M49 with distribution detected in almost all forms of life. Although the physiological role of human DPP III (hDPP III) is not yet fully elucidated, its involvement in pathophysiological processes such as mammalian pain modulation, blood pressure regulation, and cancer processes, underscores the need to find new hDPP III inhibitors. In this research, five series of structurally different coumarin derivatives were studied to provide a relationship between their inhibitory profile toward hDPP III combining an in vitro assay with an in silico molecular modeling study. The experimental results showed that 26 of the 40 tested compounds exhibited hDPP III inhibitory activity at a concentration of 10 µM. Compound 12 (3-benzoyl-7-hydroxy-2H-chromen-2-one) proved to be the most potent inhibitor with IC50 value of 1.10 μM. QSAR modeling indicates that the presence of larger substituents with double and triple bonds and aromatic hydroxyl groups on coumarin derivatives increases their inhibitory activity. Docking predicts that 12 binds to the region of inter-domain cleft of hDPP III while binding mode analysis obtained by MD simulations revealed the importance of 7-OH group on the coumarin core as well as enzyme residues Ile315, Ser317, Glu329, Phe381, Pro387, and Ile390 for the mechanism of the binding pattern and compound 12 stabilization. The present investigation, for the first time, provides an insight into the inhibitory effect of coumarin derivatives on this human metalloproteinase.
Collapse
Affiliation(s)
- Dejan Agić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.K.); (D.Š.); (D.B.); (V.R.); (M.L.)
- Correspondence:
| | - Maja Karnaš
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.K.); (D.Š.); (D.B.); (V.R.); (M.L.)
| | - Domagoj Šubarić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.K.); (D.Š.); (D.B.); (V.R.); (M.L.)
| | - Melita Lončarić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.L.); (M.M.)
| | - Sanja Tomić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (S.T.); (Z.K.)
| | - Zrinka Karačić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (S.T.); (Z.K.)
| | - Drago Bešlo
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.K.); (D.Š.); (D.B.); (V.R.); (M.L.)
| | - Vesna Rastija
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.K.); (D.Š.); (D.B.); (V.R.); (M.L.)
| | - Maja Molnar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.L.); (M.M.)
| | - Boris M. Popović
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Miroslav Lisjak
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.K.); (D.Š.); (D.B.); (V.R.); (M.L.)
| |
Collapse
|
5
|
Šmidlehner T, Košćak M, Božinović K, Majhen D, Schmuck C, Piantanida I. Fluorimetric and CD Recognition between Various ds-DNA/RNA Depends on a Cyanine Connectivity in Cyanine-guanidiniocarbonyl-pyrrole Conjugate. Molecules 2020; 25:molecules25194470. [PMID: 33003366 PMCID: PMC7583847 DOI: 10.3390/molecules25194470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 11/16/2022] Open
Abstract
Two novel isosteric conjugates of guanidiniocarbonyl-pyrrole and 6-bromo-TO (thiazole orange) were prepared, differing only in linker connectivity to cyanine (benzothiazole nitrogen vs. quinoline nitrogen). The quinoline analog was significantly more susceptible to aggregation in an aqueous medium, which resulted in induced circular dichroism (ICD; λ = 450-550 nm) recognition between A-T(U) and G-C basepair containing polynucleotides. The benzothiazole-isostere showed pronounced (four-fold) fluorimetric selectivity toward ds-RNA in comparison to any ds-DNA, at variance to its quinoline-analogue fluorescence being weakly selective to GC-DNA. Preliminary screening on human tumor and normal lung cell lines showed that both dyes very efficiently enter living cells and accumulate in mitochondria, causing moderate cytotoxic effects, and thus could be considered as lead compounds toward novel theragnostic mitochondrial dyes.
Collapse
Affiliation(s)
- Tamara Šmidlehner
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (T.Š.); (M.K.)
| | - Marta Košćak
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (T.Š.); (M.K.)
| | - Ksenija Božinović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (K.B.); (D.M.)
| | - Dragomira Majhen
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (K.B.); (D.M.)
| | - Carsten Schmuck
- Institute of Organic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany;
| | - Ivo Piantanida
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (T.Š.); (M.K.)
- Correspondence: ; Tel.: +385-1-4571-326
| |
Collapse
|