1
|
Chen Y, Huai B, Wu JC, Zhang N, Wang Y, Li Q. Purification, folding, activity analysis and substrate specificity of Pseudomonas diacylglycerol kinase. Protein Expr Purif 2025; 232:106723. [PMID: 40300659 DOI: 10.1016/j.pep.2025.106723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/24/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
The structural and functional investigation of bacterial membrane proteins is crucial to the development of antibiotics. Diacylglycerol kinase (DAGK) from Escherichia coli (E. coli) has been extensively studied as a model membrane protein. However, the DAGK from Pseudomonas aeruginosa (PAO1-DAGK) with a 44 % sequence identity to E. coli-DAGK is not well characterized. To explore the properties of PAO1-DAGK, it was successfully expressed in E. coli and was purified in Decyl-β-D-maltoside (DM) micelles followed with characterizations. Chemical cross-linking studies revealed that PAO1-DAGK in DM micelles could form dimers and trimers. The kinase activity of PAO1-DAGK was determined to be 24.2 ± 2.2 U/mg protein in a mixed-micelle system. The effects of pH and temperature on the activity of PAO1-DAGK were also investigated, respectively. PAO1-DAGK in DM micelles exhibited good stability at pH 6.0-10.0 and below 45 °C. Substrate specificity measurements indicated that PAO1-DAGK demonstrated a clear preference for medium-chain diacylglycerols (DAGs) in the mixed-micelle system, with sn-1,2-Dihexanoylglycerol (DiC6) being the most favored substrate. Molecular docking results demonstrated the interactions between DAGs and PAO1-DAGK.
Collapse
Affiliation(s)
- Yipeng Chen
- China-Malaysia Belt and Road Joint Laboratory on Oil Processing and Safety, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Bin Huai
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Jin Chuan Wu
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Ning Zhang
- China-Malaysia Belt and Road Joint Laboratory on Oil Processing and Safety, Jinan University, Guangzhou, 510632, China.
| | - Yong Wang
- China-Malaysia Belt and Road Joint Laboratory on Oil Processing and Safety, Jinan University, Guangzhou, 510632, China.
| | - Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, 510316, China.
| |
Collapse
|
2
|
Mohammad Hood MH, Tengku Abdul Hamid TH, Abdul Wahab RA, Huyop FZ, Kaya Y, Abdul Hamid AAA. Molecular interactions of trichoderma β-1,4-glucosidase (ThBglT12) with mycelial cell wall components of phytopathogenic Macrophomina phaseolina. J Biomol Struct Dyn 2022; 41:2831-2847. [PMID: 35174777 DOI: 10.1080/07391102.2022.2039772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Efficacy of a β-1,4-glucosidase from Trichoderma harzianum T12 (ThBglT12) in disrupting the cell wall of the phytopathogenic fungus M. phaseolina (Macrophomina phaseolina) was studied, as the underlying molecular mechanisms of cell wall recognition remains elusive. In this study, the binding location identified by a consensus of residues predicted by COACH tool, blind docking, and multiple sequence alignment revealed that molecular recognition by ThBglT12 occurred through interactions between the α-1,3-glucan, β-1,3-glucan, β-1,3/1,4-glucan, and chitin components of M. phaseolina, with corresponding binding energies of -7.4, -7.6, -7.5 and -7.8 kcal/mol. The residue consensus verified the participation of Glu172, Tyr304, Trp345, Glu373, Glu430, and Trp431 in the active site pocket of ThBglT12 to bind the ligands, of which Trp345 was the common interacting residue. Root mean square deviation (RMSD), root mean square fluctuation (RMSF), total energy, and minimum distance calculation from molecular dynamics (MD) simulation further confirmed the stability and the closeness of the binding ligands into the ThBglT12 active site pocket. The h-bond occupancy by Glu373 and Trp431 instated the role of the nucleophile for substrate recognition and specificity, crucial for cleaving the β-1,4 linkage. Further investigation showed that the proximity of Glu373 to the anomeric carbon of β-1,3/1,4-glucan (3.5 Å) and chitin (5.5 Å) indicates the nucleophiles' readiness to form enzyme-substrate intermediates. Plus, the neighboring water molecule appeared to be correctly positioned and oriented towards the anomeric carbon to hydrolyze the β-1,3/1,4-glucan and chitin, in less than 4.0 Å. In a nutshell, the study verified that the ThBglT12 is a good alternative fungicide to inhibit the growth of M. phaseolina.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Hakim Mohammad Hood
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
| | - Tengku Haziyamin Tengku Abdul Hamid
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia.,Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
| | - Roswanira Abdul Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.,Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor Bahru, Malaysia
| | - Fahrul Zaman Huyop
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Yilmaz Kaya
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Turkey
| | - Azzmer Azzar Abdul Abdul Hamid
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia.,Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
| |
Collapse
|
3
|
Lameh F, Baseer AQ, Ashiru AG. Comparative molecular docking and molecular-dynamic simulation of wild-type- and mutant carboxylesterase with BTA-hydrolase for enhanced binding to plastic. Eng Life Sci 2022; 22:13-29. [PMID: 35024024 PMCID: PMC8727734 DOI: 10.1002/elsc.202100083] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/25/2021] [Accepted: 10/10/2021] [Indexed: 01/09/2023] Open
Abstract
According to the literature review, microbial degradation of polyethylene terephthalate by PETases has been detected effective and eco-friendly. However, the number of microorganisms capable of such feats is limited with some undesirable bioprospecting results. BTA-hydrolase has been already reported capable of degrading polyethylene terephthalate. Therefore, mutation by in silico site-directed mutagenesis means to introduce current isomer of PETase for polyethylene terephthalate degradative capability as a better approach to resolve this issue. This study aimed to use in silico site-directed mutagenesis to convert a carboxylesterase from Archaeoglobus fulgidus to BTA-hydrolase from Thermobifida fusca by replacing six amino acids in specific locations. This work was followed by molecular docking analysis with polyethylene terephthalate and polypropylene to compare their interactions. The best-docked enzyme-substrate complex was further subjected to molecular dynamics simulation to gauge the binding quality of the BTA-hydrolase, wild-type and mutant-carboxylesterase with only polyethylene terephthalate as a substrate. Results of molecular docking revealed lowest binding energy for the wild-type carboxylesterase-polypropylene complex (-7.5 kcal/mol). The root-mean-square deviation value was observed stable for BTA-hydrolase. Meanwhile, root-mean-square fluctuation was assessed with higher fluctuation for the mutated residue Lys178. Consequently, the Rg value for BTA-hydrolase-ligand complex (∼1.68 nm) was the lowest compared to the mutant and wild-type carboxylesterase. The collective data conveyed that mutations imparted a minimal change in the ability of the mutant carboxylesterase to bind to polyethylene terephthalate.
Collapse
Affiliation(s)
- Fatana Lameh
- Department of BotanyFaculty of BiologyKabul UniversityKabulAfghanistan
- Department of BiosciencesFaculty of ScienceUniversiti Teknologi MalaysiaJohor BahruMalaysia
| | - Abdul Qadeer Baseer
- Department of BiosciencesFaculty of ScienceUniversiti Teknologi MalaysiaJohor BahruMalaysia
- Department of BiologyFaculty of EducationKandahar UniversityKandaharAfghanistan
| | - Abubakar Garba Ashiru
- Department of ChemistryZamfara State College of EducationMaruNigeria
- Green Chemistry Research GroupDepartment of Chemistry, Faculty of ScienceUniversiti Teknologi MalaysiaJohor BahruMalaysia
| |
Collapse
|
4
|
Romes NB, Abdul Wahab R, Abdul Hamid M, Oyewusi HA, Huda N, Kobun R. Thermodynamic stability, in-vitro permeability, and in-silico molecular modeling of the optimal Elaeis guineensis leaves extract water-in-oil nanoemulsion. Sci Rep 2021; 11:20851. [PMID: 34675286 PMCID: PMC8531315 DOI: 10.1038/s41598-021-00409-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022] Open
Abstract
Nanoemulsion is a delivery system used to enhance bioavailability of plant-based compounds across the stratum corneum. Elaeis guineensis leaves are rich source of polyphenolic antioxidants, viz. gallic acid and catechin. The optimal E. guineensis leaves extract water-in-oil nanoemulsion was stable against coalescence, but it was under significant influence of Ostwald ripening over 90 days at 25 °C. The in-vitro permeability revealed a controlled and sustained release of the total phenolic compounds (TPC) of EgLE with a cumulative amount of 1935.0 ± 45.7 µgcm-2 after 8 h. The steady-state flux and permeation coefficient values were 241.9 ± 5.7 µgcm-2 h-1 and 1.15 ± 0.03 cm.h-1, respectively. The kinetic release mechanism for TPC of EgLE was best described by the Korsmeyer-Peppas model due to the highest linearity of R2 = 0.9961, indicating super case II transport mechanism. The in-silico molecular modelling predicted that the aquaporin-3 protein in the stratum corneum bonded preferably to catechin over gallic acid through hydrogen bonds due to the lowest binding energies of - 57.514 kcal/mol and - 8.553 kcal/mol, respectively. Thus, the in-silico study further verified that catechin could improve skin hydration. Therefore, the optimal nanoemulsion could be used topically as moisturizer to enhance skin hydration based on the in-silico prediction.
Collapse
Affiliation(s)
- Nissha Bharrathi Romes
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Malaysia.
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Malaysia.
| | - Mariani Abdul Hamid
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Malaysia
| | - Habeebat Adekilekun Oyewusi
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Malaysia
| | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia.
| | - Rovina Kobun
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia
| |
Collapse
|
5
|
Oyewusi HA, Huyop F, Wahab RA, Hamid AAA. In silico assessment of dehalogenase from Bacillus thuringiensis H2 in relation to its salinity-stability and pollutants degradation. J Biomol Struct Dyn 2021; 40:9332-9346. [PMID: 34014147 DOI: 10.1080/07391102.2021.1927846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increased scientific interest has led to the rise in biotechnological uses of halophilic and halotolerant microbes for hypersaline wastewater bioremediation. Hence, this study performed molecular docking, molecular dynamic (MD) simulations, and validation by Molecular Mechanic Poisson-Boltzmann Surface Area (MM-PBSA) calculations on the DehH2 from Bacillus thuringiensis H2. We aimed to identify the interactions of DehH2 with substrates haloacids, haloacetates, and chlorpyrifos under extreme salinity (35% NaCl). MD simulations revealed that DehH2 preferentially degraded haloacids and haloacetates (-6.3 to -4.7 kcal/mol) by forming three or four hydrogen bonds to the catalytic triad, Asp125, Arg201, and Lys202. Conversely, chlorpyrifos was the least preferred substrate in both MD simulations and MM-PBSA calculations. MD simulation results ranked the DehH2-L-2CP complex (RMSD □0.125-0.23 nm) as the most stable while the least was the DehH2-chlorpyrifos complex (RMSD 0.32 nm; RMSF 0.0 - 0.29). The order of stability was as follows: DehH2-L-2CP > DehH2-MCA > DehH2-D-2CP > DehH2-3CP > DehH2-2,2-DCP > DehH2-2,3-DCP > DehH2-TCA > DehH2-chlorpyrifos. The MM-PBSA calculations further affirmed the DehH2-L-2CP complex's highest stability with the lowest binding energy of -45.14 kcal/mol, followed closely by DehH2-MCA (-41.21 kcal/mol), DehH2-D-2CP (-31.59 kcal/mol), DehH2-3CP (-30.75 kcal/mol), DehH2-2,2- DCP (-29.72 kcal/mol), DehH2-2,3-DCP (-22.20 kcal/mol) and DehH2-TCA (-18.46 kcal/mol). The positive binding energy of the DehH2-chlorpyrifos complex (+180.57 kcal/mol) proved the enzyme's non-preference for the substrate. The results ultimately illustrated the unique specificity of the DehH2 to degrade the above-said pollutants under a hypersaline condition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Habeebat Adekilekun Oyewusi
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.,Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.,Department of Biochemistry, School of Science and Computer Studies, Federal Polytechnic Ado Ekiti, Ado Ekiti, Ekiti State, Nigeria
| | - Fahrul Huyop
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.,Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Roswanira Abdul Wahab
- Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.,Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan Pahang, Malaysia
| |
Collapse
|
6
|
Bahaman AH, Wahab RA, Abdul Hamid AA, Abd Halim KB, Kaya Y. Molecular docking and molecular dynamics simulations studies on β-glucosidase and xylanase Trichoderma asperellum to predict degradation order of cellulosic components in oil palm leaves for nanocellulose preparation. J Biomol Struct Dyn 2020; 39:2628-2641. [DOI: 10.1080/07391102.2020.1751713] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Aina Hazimah Bahaman
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
- Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
- Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kuliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Pahang, Malaysia
| | - Khairul Bariyyah Abd Halim
- Department of Biotechnology, Kuliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Pahang, Malaysia
| | - Yilmaz Kaya
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| |
Collapse
|
7
|
Lima LHFD, Fernandez-Quintéro ML, Rocha REO, Mariano DCB, de Melo-Minardi RC, Liedl KR. Conformational flexibility correlates with glucose tolerance for point mutations in β-glucosidases - a computational study. J Biomol Struct Dyn 2020; 39:1621-1634. [PMID: 32107974 DOI: 10.1080/07391102.2020.1734484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
β-glucosidases (EC 3.2.1.21) have been described as essential to second-generation biofuel production. They act in the last step of the lignocellulosic saccharification, cleaving the β - 1,4 glycosidic bonds in cellobiose to produce two molecules of glucose. However, β-glucosidases have been described as strongly inhibited by glucose, causing an increment of cellobiose concentration. Also, cellobiose is an inhibitor of other enzymes used in this process, such as exoglucanases and endoglucanases. Hence, the engineering of thermostable and glucose-tolerant β-glucosidases has been targeted by many studies. In this study, we performed high sampling accelerated molecular dynamics for a wild glucose-tolerant GH1 β-glucosidase (Bgl1A), a wild non-tolerant (Bgl1B), and a set of glucose-tolerant Bgl1B's mutants: V302F, N301Q/V302F, F172I, V227M, G246S, T299S, and H228T. Our results suggest that point mutations promissory to induce glucose tolerance trend to enhance the mobility of the flexible loops around the active site. Mutations affected B and C loops regions, and an αβ-hairpin motif between them. Conformational clusters and free energy landscape profiles suggest that the mobility acquired by mutants allows a higher closure of the substrate channel. This closure is compatible with a higher impedance for glucose entrance and stimulus of its withdrawal. Based on mutants' structural analyses, we inferred that both the direct stereochemical effect on the glucose path and the changes in the mobility affect glucose tolerance. We hope these results be useful for the rational design of glucose-tolerant and industrially promising enzymes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Leonardo Henrique Franca de Lima
- Laboratory of Molecular Modeling and Bioinformatics, Department of Exact and Biological Sciences (DECEB), Universidade Federal de São João Del-Rei, Sete Lagoas, Brazil
| | - Monica Lisa Fernandez-Quintéro
- Institute of General, Inorganic and Theoretical Chemistry (IGITC), Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens-Universität-Innsbruck, Innsbruck, Austria
| | - Rafael Eduardo Oliveira Rocha
- Laboratory of Bioinformatics and Systems (LBS), Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratory of Molecular Modeling and Drug Design, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Diego César Batista Mariano
- Laboratory of Bioinformatics and Systems (LBS), Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raquel Cardoso de Melo-Minardi
- Laboratory of Bioinformatics and Systems (LBS), Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Klaus Roman Liedl
- Institute of General, Inorganic and Theoretical Chemistry (IGITC), Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens-Universität-Innsbruck, Innsbruck, Austria
| |
Collapse
|