1
|
Zięba A, Bartuzi D, Stępnicki P, Matosiuk D, Wróbel TM, Laitinen T, Castro M, Kaczor AA. Discovery and in vitro Evaluation of Novel Serotonin 5-HT 2A Receptor Ligands Identified Through Virtual Screening. ChemMedChem 2024; 19:e202400080. [PMID: 38619283 DOI: 10.1002/cmdc.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
The 5-HT2A receptor is a molecular target of high pharmacological importance. Ligands of this protein, particularly atypical antipsychotics, are useful in the treatment of numerous mental disorders, including schizophrenia and major depressive disorder. Structure-based virtual screening using a 5-HT2A receptor complex was performed to identify novel ligands for the 5-HT2A receptor, serving as potential antidepressants. From the Enamine screening library, containing over 4 million compounds, 48 molecules were selected for subsequent experimental validation. These compounds were tested against the 5-HT2A receptor in radioligand binding assays. From the tested batch, six molecules were identified as ligands of the main molecular target and were forwarded to a more detailed in vitro profiling. This included radioligand binding assays at 5-HT1A, 5-HT7, and D2 receptors and functional studies at 5-HT2A receptors. These compounds were confirmed to show a binding affinity for at least one of the targets tested in vitro. The success rate for the inactive template-based screening reached 17 %, while it was 9 % for the active template-based screening. Similarity and fragment analysis indicated the structural novelty of the identified compounds. Pharmacokinetics for these molecules was determined using in silico approaches.
Collapse
Affiliation(s)
- Agata Zięba
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., 20059, Lublin, Poland
| | - Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., 20059, Lublin, Poland
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75124, Uppsala, Sweden
| | - Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., 20059, Lublin, Poland
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., 20059, Lublin, Poland
| | - Tomasz M Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., 20059, Lublin, Poland
| | - Tuomo Laitinen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, 70211, Kuopio, Finland
| | - Marián Castro
- Department of Pharmacology, Universidade de Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Avda. de Barcelona, 15782, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Travesía da Choupana s/n, E-15706, Santiago de Compostela, Spain
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., 20059, Lublin, Poland
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
2
|
Albujuq NR, Meana JJ, Diez-Alarcia R, Muneta-Arrate I, Naqvi A, Althumayri K, Alsehli M. Design, Synthesis, Molecular Docking, and Biological Evaluation of Novel Pimavanserin-Based Analogues as Potential Serotonin 5-HT 2A Receptor Inverse Agonists. J Med Chem 2023. [PMID: 37378639 DOI: 10.1021/acs.jmedchem.3c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
There is concern for important adverse effects with use of second-generation antipsychotics in Parkinson's disease psychosis (PDP) and dementia-related psychosis. Pimavanserin is the only antipsychotic drug authorized for PDP and represents an inverse agonist of 5-HT2A receptors (5-HT2AR) lacking affinity for dopamine receptors. Therefore, the development of serotonin 5-HT2AR inverse agonists without dopaminergic activity represents a challenge for different neuropsychiatric disorders. Using ligand-based drug design, we discovered a novel structure of pimavanserin analogues (2, 3, and 4). In vitro competition receptor binding and functional G protein coupling assays demonstrated that compounds 2, 3, and 4 showed higher potency than pimavanserin as 5-HT2AR inverse agonists in the human brain cortex and recombinant cells. To assess the effect of molecular substituents for selectivity and inverse agonism at 5-HT2ARs, molecular docking and in silico predicted physicochemical parameters were performed. Docking studies were in agreement with in vitro screenings and the results resembled pimavanserin.
Collapse
Affiliation(s)
- Nader R Albujuq
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU, 48940 Leioa, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, 48940 Leioa, Bizkaia, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country UPV/EHU, 48940 Leioa, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, 48940 Leioa, Bizkaia, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Itziar Muneta-Arrate
- Department of Pharmacology, University of the Basque Country UPV/EHU, 48940 Leioa, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, 48940 Leioa, Bizkaia, Spain
| | - Arshi Naqvi
- Chemistry Department, College of Science, Taibah University, Al Madinah, Al Munwarah 30002, Saudi Arabia
| | - Khalid Althumayri
- Chemistry Department, College of Science, Taibah University, Al Madinah, Al Munwarah 30002, Saudi Arabia
| | - Mosa Alsehli
- Chemistry Department, College of Science, Taibah University, Al Madinah, Al Munwarah 30002, Saudi Arabia
| |
Collapse
|
3
|
Casey AB, Cui M, Booth RG, Canal CE. "Selective" serotonin 5-HT 2A receptor antagonists. Biochem Pharmacol 2022; 200:115028. [PMID: 35381208 PMCID: PMC9252399 DOI: 10.1016/j.bcp.2022.115028] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 01/29/2023]
Abstract
Blockade of the serotonin 5-HT2A G protein-coupled receptor (5-HT2AR) is a fundamental pharmacological characteristic of numerous antipsychotic medications, which are FDA-approved to treat schizophrenia, bipolar disorder, and as adjunctive therapies in major depressive disorder. Meanwhile, activation of the 5-HT2AR by serotonergic psychedelics may be useful in treating neuropsychiatric indications, including major depressive and substance use disorders. Serotonergic psychedelics and other 5-HT2AR agonists, however, often bind other receptors, and standard 5-HT2AR antagonists lack sufficient selectivity to make well-founded mechanistic conclusions about the 5-HT2AR-dependent effects of these compounds and the general neurobiological function of 5-HT2ARs. This review discusses the limitations and strengths of currently available "selective" 5-HT2AR antagonists, the molecular determinants of antagonist selectivity at 5-HT2ARs, and the utility of molecular pharmacology and computational methods in guiding the discovery of novel unambiguously selective 5-HT2AR antagonists.
Collapse
Affiliation(s)
- Austen B Casey
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Raymond G Booth
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA; Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Clinton E Canal
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| |
Collapse
|
4
|
Overcoming Depression with 5-HT2A Receptor Ligands. Int J Mol Sci 2021; 23:ijms23010010. [PMID: 35008436 PMCID: PMC8744644 DOI: 10.3390/ijms23010010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 01/25/2023] Open
Abstract
Depression is a multifactorial disorder that affects millions of people worldwide, and none of the currently available therapeutics can completely cure it. Thus, there is a need for developing novel, potent, and safer agents. Recent medicinal chemistry findings on the structure and function of the serotonin 2A (5-HT2A) receptor facilitated design and discovery of novel compounds with antidepressant action. Eligible papers highlighting the importance of 5-HT2A receptors in the pathomechanism of the disorder were identified in the content-screening performed on the popular databases (PubMed, Google Scholar). Articles were critically assessed based on their titles and abstracts. The most accurate papers were chosen to be read and presented in the manuscript. The review summarizes current knowledge on the applicability of 5-HT2A receptor signaling modulators in the treatment of depression. It provides an insight into the structural and physiological features of this receptor. Moreover, it presents an overview of recently conducted virtual screening campaigns aiming to identify novel, potent 5-HT2A receptor ligands and additional data on currently synthesized ligands acting through this protein.
Collapse
|