1
|
Guo W, Wang X, Hu J, Zhang B, Zhao L, Zhang G, Qi J, Wei Z, Bao Y, Tian M, Wang S. In silico design of a multi-epitope vaccine against Mycobacterium avium subspecies paratuberculosis. Front Immunol 2025; 16:1505313. [PMID: 39935480 PMCID: PMC11810964 DOI: 10.3389/fimmu.2025.1505313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
The widespread chronic enteritis known as Paratuberculosis (PTB) or Johne's disease (JD) is caused by Mycobacterium avium subspecies paratuberculosis (MAP), posing a significant threat to global public health. Given the challenges associated with PTB or JD, the development and application of vaccines are potentially important for disease control. The aim of this study was to design a multi-epitope vaccine against MAP. A total of 198 MAP genomes were analyzed using pan-genome and reverse vaccinology approaches. B-cell and T-cell epitope analysis was performed on the selected promising cross-protective antigens followed by selection of epitopes with high antigenicity, no allergenicity, and no toxicity for the design of the vaccine. The designed vaccine was evaluated through molecular dynamics simulations, molecular docking, and immunological simulations. The results revealed the identification of five promising cross-protective antigens. In total, 10 B-cell epitopes, 10 HTL epitopes, and 9 CTL epitopes were selected for the design of the vaccine. Both the vaccine candidate and the vaccine-TLR4 complex demonstrated considerable stability in molecular dynamics simulations. Molecular docking studies confirmed that the vaccine candidate successfully interacted with TLR4. Immunological simulations showed an increase in both B-cell and T-cell populations after vaccination. Additionally, the vaccine candidate exhibited a codon adaptability index of 1.0 and a GC content of 53.64%, indicating strong potential for successful expression in Escherichia coli. This research developed a multi-epitope vaccine targeting MAP through pan-genomes and reverse vaccinology methods, offering innovative strategies for creating effective vaccines against MAP.
Collapse
Affiliation(s)
- Weiqi Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xinyu Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jiangang Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Beibei Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Luru Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Guangdong Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanqing Bao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
2
|
Hossen MS, Hasan MN, Haque M, Al Arian T, Halder SK, Uddin MJ, Abdullah-Al-Mamun M, Shakil MS. Immunoinformatics-aided rational design of multiepitope-based peptide vaccine (MEBV) targeting human parainfluenza virus 3 (HPIV-3) stable proteins. J Genet Eng Biotechnol 2023; 21:162. [PMID: 38055114 DOI: 10.1186/s43141-023-00623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Human parainfluenza viruses (HPIVs) are common RNA viruses responsible for respiratory tract infections. Human parainfluenza virus 3 (HPIV-3) is particularly pathogenic, causing severe illnesses with no effective vaccine or therapy available. RESULTS The current study employed a systematic immunoinformatic/reverse vaccinology approach to design a multiple epitope-based peptide vaccine against HPIV-3 by analyzing the virus proteome. On the basis of a number of therapeutic features, all three stable and antigenic proteins with greater immunological relevance, namely matrix protein, hemagglutinin neuraminidase, and RNA-directed RNA polymerase L, were chosen for predicting and screening suitable T-cell and B-cell epitopes. All of our desired epitopes exhibited no homology with human proteins, greater population coverage (99.26%), and high conservancy among reported HPIV-3 isolates worldwide. All of the T- and B-cell epitopes are then joined by putative ligands, yielding a 478-amino acid-long final construct. Upon computational refinement, validation, and thorough screening, several programs rated our peptide vaccine as biophysically stable, antigenic, allergenic, and non-toxic in humans. The vaccine protein demonstrated sufficiently stable interaction as well as binding affinity with innate immune receptors TLR3, TLR4, and TLR8. Furthermore, codon optimization and virtual cloning of the vaccine sequence in a pET32a ( +) vector showed that it can be readily expressed in the bacterial system. CONCLUSION The in silico designed HPIV-3 vaccine demonstrated potential in evoking an effective immune response. This study paves the way for further preclinical and clinical evaluation of the vaccine, offering hope for a future solution to combat HPIV-3 infections.
Collapse
Affiliation(s)
- Md Sakib Hossen
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka, 1213, Bangladesh.
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216, Bangladesh.
| | - Md Nazmul Hasan
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216, Bangladesh.
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh.
| | - Munima Haque
- Biotechnology Program, Department of Mathematics and Natural Sciences (MNS), Brac University, kha-208, 1 Bir Uttam Rafiqul Islam Ave, Dhaka, 1212, Bangladesh
| | - Tawsif Al Arian
- Department of Pharmacy, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Sajal Kumar Halder
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Md Jasim Uddin
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - M Abdullah-Al-Mamun
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Md Salman Shakil
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216, Bangladesh
- Microbiology Program, Department of Mathematics and Natural Sciences (MNS), Brac University, 66 Mohakhali, Dhaka, 1212, Bangladesh
| |
Collapse
|
3
|
Elalouf A, Yaniv-Rosenfeld A. Immunoinformatic-guided designing and evaluating protein and mRNA-based vaccines against Cryptococcus neoformans for immunocompromised patients. J Genet Eng Biotechnol 2023; 21:108. [PMID: 37882985 PMCID: PMC10603020 DOI: 10.1186/s43141-023-00560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Cryptococcus neoformans is a fungal pathogen that can cause serious meningoencephalitis in individuals with compromised immune systems due to HIV/AIDS (human immunodeficiency virus/acquired immunodeficiency syndrome), liver cirrhosis, and transplantation. Mannoproteins (MPs), glycoproteins in the C. neoformans capsule, crucially impact virulence by mediating adhesion to lung cells and modulating immune response via cytokine induction and phagocytosis influence. Therefore, creating a vaccine that can generate targeted antibodies to fight infection and prevent fungal illnesses is essential. RESULTS This research aims to create a unique, stable, and safe vaccine through bioinformatics methodologies, aiming at epitopes of T and B cells found in the MP of C. neoformans. Based on toxicity, immunogenicity, and antigenicity, this research predicted novel T cells (GNPVGGNVT, NPVGGNVTT, QTSYARLLS, TSVGNGIAS, WVMPGDYTN, AAATGSSSSGSTGSG, GSTGSGSGSAAAGST, SGSTGSGSGSAAAGS, SSGSTGSGSGSAAAG, and SSSGSTGSGSGSAAA) and B cell (ANGSTSTFQQRYTGTYTNGDGSLGTWTQGETVTPQTAYSTPATSNCKTYTSVGNGIASLALSNAGSNSTAAATNSSSGGASAAATGSSSSGSTGSGSGSAAAGSTAAASSSGDSSSSTSAAMSNGI, HGATGLGNPVGGNVTT, TMGPTNPSEPTLGTAI, GNPVGGNVTTNATGSD, and NSTAAATNSSSGGASA) epitopes for a multiple-epitope vaccine and constructed a vaccine subunit with potential immunogenic properties. The present study used four linkers (AAY, GPGPG, KK, and EAAAK linkers) to connect the epitopes and adjuvant. After constructing the vaccine, it was confronted with receptor docking and simulation analysis. Subsequently, the vaccine was cloned into the vector of Escherichia coli pET-28a ( +) by ligation process for the expression using the SnapGene tool, which confirmed a significant immune response. To assess the constructed vaccine's properties, multiple computational tools were employed. Based on the MP sequence, the tools evaluated the antigenicity, immunogenicity, cytokine-inducing capacity, allergenicity, toxicity, population coverage, and solubility. CONCLUSION Eventually, the results revealed a promising multi-epitope vaccine as a potential candidate for addressing global C. neoformans infection, particularly in immunocompromised patients. Yet, additional in vitro and in vivo investigations are necessary to validate its safety and effectiveness.
Collapse
Affiliation(s)
- Amir Elalouf
- Department of Management, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | | |
Collapse
|
4
|
Ishaq Z, Zaheer T, Waseem M, Shahwar Awan H, Ullah N, AlAsmari AF, AlAsmari F, Ali A. Immunoinformatics aided designing of a next generation poly-epitope vaccine against uropathogenic Escherichia coli to combat urinary tract infections. J Biomol Struct Dyn 2023; 42:11976-11996. [PMID: 37811774 DOI: 10.1080/07391102.2023.2266018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Urinary tract infections (UTIs) are the second most prevalent bacterial infections and uropathogenic Escherichia coli (UPEC) stands among the primary causative agents of UTIs. The usage of antibiotics is the routine therapy being used in various countries to treat UTIs but becoming ineffective because of increasing antibiotic resistance among UPEC strains. Thus, there must be the development of some alternative treatment strategies such as vaccine development against UPEC. In the following study, pan-genomics along with reverse vaccinology approaches is used under the framework of bioinformatics for the identification of core putative vaccine candidates, employing 307 UPEC genomes (complete and draft), available publicly. A total of nine T-cell epitopes (derived from B-cells) of both MHC classes (I and II), were prioritized among three potential protein candidates. These epitopes were then docked together by using linkers (GPGPG and AAY) and an adjuvant (Cholera Toxin B) to form a poly-valent vaccine construct. The chimeric vaccine construct was undergone by molecular modelling, further refinement and energy minimization. We predicted positive results of the vaccine construct in immune simulations with significantly high levels of immune cells. The protein-protein docking analysis of vaccine construct with toll-like receptors predicted efficient binding, which was further validated by molecular dynamics simulation of vaccine construct with TLR-2 and TLR-4 at 120 ns, resulting in stable complexes' conformation throughout the simulation run. Overall, the vaccine construct demonstrated positive antigenic response. In future, this chimeric vaccine construct or the identified epitopes could be experimentally validated for the development of UPEC vaccines against UTIs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zaara Ishaq
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tahreem Zaheer
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Maaz Waseem
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Hayeqa Shahwar Awan
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
- Shifa International Hospitals Ltd, Islamabad, Pakistan
| | - Nimat Ullah
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
- NYU Langone Health, New York, United States
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amjad Ali
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
5
|
Yari A, Bamdad T, Hosseini SY. Comparison of Three Different Methods of Transfection for the Production of Recombinant Adenovirus Expressing Human Carcinoembryonic Antigen Gene. ARCHIVES OF RAZI INSTITUTE 2023; 78:1057-1064. [PMID: 38028844 PMCID: PMC10657935 DOI: 10.22092/ari.2021.354824.1651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/28/2021] [Indexed: 12/01/2023]
Abstract
Adenoviral vectors (AdVs) are widely used as a gene delivery vehicle and vaccine design due to their genetic stability, transfer capacity of large genes, production at high titers, and remarkable efficacy of transduction. One of the most important applications of AdVs is in cancer immunotherapy. Tumor-associated antigens are overexpressed in cancer cells; however, they cannot induce immune responses sufficiently. Therefore, the immune system must be stimulated against these antigens to kill the cancer cells. This study described the construction steps of a recombinant AdV expressing human carcinoembryonic antigen (CEA) gene. Furthermore, in order to achieve a high titer of the virus, an efficient transfection was required. Three various transfection reagents were compared to achieve the best method of transfection. Carcinoembryonic antigen was cloned into the pAdV and transfected into the A293 cells using three different reagents, including polyethylenimine (PEI), calcium phosphate, and DMRIE-C. The PEI had the highest transfection efficiency, which was selected for the transfection of the recombinant plasmid. It has low toxicity for cells and is suitable for large-scale transfection. The virus produced in this study can be applied as a vaccine in cancer immunotherapy for stimulating the immune system against CEA-expressing tumors.
Collapse
Affiliation(s)
- A Yari
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - T Bamdad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - S Y Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Wu Z, Zeng X, Wang H, Wang X. LncRNA ARAP1-AS1 contributes to lung adenocarcinoma development by targeting miR-8068 to upregulate CEACAM5. Cancer Biomark 2023; 38:177-189. [PMID: 37545214 DOI: 10.3233/cbm-220223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND It has been discovered that lncRNA ARAP1-AS1 is upregulated and operates as a tumor promoter in many cancers. However, its pattern of expression and potential mechanism in lung adenocarcinoma (LUAD) is still unknown. METHODS The levels of lncRNA ARAP1-AS1, miR-8068, and CEACAM5 expressions in LUAD cell lines and tissues were assessed by conducting western blot and RT-qPCR analyses. MiR-8068's potential targeting relationships with lncRNA ARAP1-AS1 and CEACAM5 were ascertained by performing bioinformatics analysis. The interaction of lncRNA ARAP1-AS1 with miR-8068 was validated by means of by RIP and luciferase reporter experiments. CCK-8, cell adhesion, and Transwell migration experiments were conducted to study how lncRNA ARAP1-AS1 affects LUAD cell migration, adhesion, and proliferation. To confirm the function of lncRNA ARAP1-AS1 in vivo, a tumor formation experiment was executed. RESULTS An elevated expression of lncRNA ARAP1-AS1 was observed among the LUAD cells and tissues. The overexpression of lncRNA ARAP1-AS boosted cell proliferation, adhesion, and migration in LUAD and also favored in vivo tumor growth. MiR-8068 was found to be lncRNA ARAP1-AS1's target gene. MiR-8068 overexpression partially antagonized lncRNA ARAP1-AS1's promotive effect on proliferation, viability, and adhesion. Meanwhile CEACAM5 could alleviate the miR-8068-induced inhibition of tumor growth. The negative correlation of miR-8068 with lncRNA ARAP1-AS1 or CEACAM5 was also revealed. CONCLUSION To upregulate CEACAM5 expression lncRNA ARAP1-AS1 targeted miR-8068, thus promoting the progression of LUAD. This indicates that the lncRNA ARAP1-AS1/miR-8068/CEACAM5 axis has potential as a therapeutic target in LUAD treatment.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Thoracardiac Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Thoracardiac Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiaofei Zeng
- Department of Thoracardiac Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Thoracardiac Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Hong Wang
- Department of Thoracardiac Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xianbo Wang
- Department of Thoracic surgery, Ya'an City Second People's Hospital, Ya'an, Sichuan, China
| |
Collapse
|
7
|
Soltan MA, Behairy MY, Abdelkader MS, Albogami S, Fayad E, Eid RA, Darwish KM, Elhady SS, Lotfy AM, Alaa Eldeen M. In silico Designing of an Epitope-Based Vaccine Against Common E. coli Pathotypes. Front Med (Lausanne) 2022; 9:829467. [PMID: 35308494 PMCID: PMC8931290 DOI: 10.3389/fmed.2022.829467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/21/2022] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli (E. coli) is a Gram-negative bacterium that belongs to the family Enterobacteriaceae. While E. coli can stay as an innocuous resident in the digestive tract, it can cause a group of symptoms ranging from diarrhea to live threatening complications. Due to the increased rate of antibiotic resistance worldwide, the development of an effective vaccine against E. coli pathotypes is a major health priority. In this study, a reverse vaccinology approach along with immunoinformatics has been applied for the detection of potential antigens to develop an effective vaccine. Based on our screening of 5,155 proteins, we identified lipopolysaccharide assembly protein (LptD) and outer membrane protein assembly factor (BamA) as vaccine candidates for the current study. The conservancy of these proteins in the main E. coli pathotypes was assessed through BLASTp to make sure that the designed vaccine will be protective against major E. coli pathotypes. The multitope vaccine was constructed using cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL), and B cell lymphocyte (BCL) epitopes with suitable linkers and adjuvant. Following that, it was analyzed computationally where it was found to be antigenic, soluble, stable, and non-allergen. Additionally, the adopted docking study, as well as all-atom molecular dynamics simulation, illustrated the promising predicted affinity and free binding energy of this constructed vaccine against the human Toll-like receptor-4 (hTLR-4) dimeric state. In this regard, wet lab studies are required to prove the efficacy of the potential vaccine construct that demonstrated promising results through computational validation.
Collapse
Affiliation(s)
- Mohamed A. Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismailia, Egypt
| | - Mohammed Y. Behairy
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Mennatallah S. Abdelkader
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Refaat A. Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M. Lotfy
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Muhammad Alaa Eldeen
- Division of Cell Biology, Histology and Genetics, Department of Zoology, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
8
|
Sami SA, Marma KKS, Mahmud S, Khan MAN, Albogami S, El-Shehawi AM, Rakib A, Chakraborty A, Mohiuddin M, Dhama K, Uddin MMN, Hossain MK, Tallei TE, Emran TB. Designing of a Multi-epitope Vaccine against the Structural Proteins of Marburg Virus Exploiting the Immunoinformatics Approach. ACS OMEGA 2021; 6:32043-32071. [PMID: 34870027 PMCID: PMC8638006 DOI: 10.1021/acsomega.1c04817] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/10/2021] [Indexed: 05/08/2023]
Abstract
Marburg virus disease (MVD) caused by the Marburg virus (MARV) generally appears with flu-like symptoms and leads to severe hemorrhagic fever. It spreads via direct contact with infected individuals or animals. Despite being considered to be less threatening in terms of appearances and the number of infected patients, the high fatality rate of this pathogenic virus is a major concern. Until now, no vaccine has been developed to combat this deadly virus. Therefore, vaccination for this virus is necessary to reduce its mortality. Our current investigation focuses on the design and formulation of a multi-epitope vaccine based on the structural proteins of MARV employing immunoinformatics approaches. The screening of potential T-cell and B-cell epitopes from the seven structural proteins of MARV was carried out through specific selection parameters. Afterward, we compiled the shortlisted epitopes by attaching them to an appropriate adjuvant and linkers. Population coverage analysis, conservancy analysis, and MHC cluster analysis of the shortlisted epitopes were satisfactory. Importantly, physicochemical characteristics, human homology assessment, and structure validation of the vaccine construct delineated convenient outcomes. We implemented disulfide bond engineering to stabilize the tertiary or quaternary interactions. Furthermore, stability and physical movements of the vaccine protein were explored using normal-mode analysis. The immune simulation study of the vaccine complexes also exhibited significant results. Additionally, the protein-protein docking and molecular dynamics simulation of the final construct exhibited a higher affinity toward toll-like receptor-4 (TLR4). From simulation trajectories, multiple descriptors, namely, root mean square deviations (rmsd), radius of gyration (Rg), root mean square fluctuations (RMSF), solvent-accessible surface area (SASA), and hydrogen bonds, have been taken into account to demonstrate the inflexible and rigid nature of receptor molecules and the constructed vaccine. Inclusively, our findings suggested the vaccine constructs' ability to regulate promising immune responses against MARV pathogenesis.
Collapse
Affiliation(s)
- Saad Ahmed Sami
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Kay Kay Shain Marma
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Shafi Mahmud
- Microbiology
Laboratory, Bioinformatics Division, Department of Genetic Engineering
and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Asif Nadim Khan
- Department of Biochemistry and Molecular
Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Sarah Albogami
- Department
of Biotechnology, College of Science, Taif
University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. El-Shehawi
- Department
of Biotechnology, College of Science, Taif
University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Rakib
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Agnila Chakraborty
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Mostafah Mohiuddin
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary
Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Mir Muhammad Nasir Uddin
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Mohammed Kamrul Hossain
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Trina Ekawati Tallei
- Department of Biology,
Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, North Sulawesi 95115, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|