1
|
Dai X, Xu R, Li N. The Interplay between Airway Cilia and Coronavirus Infection, Implications for Prevention and Control of Airway Viral Infections. Cells 2024; 13:1353. [PMID: 39195243 PMCID: PMC11353096 DOI: 10.3390/cells13161353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Coronaviruses (CoVs) are a class of respiratory viruses with the potential to cause severe respiratory diseases by infecting cells of the upper respiratory tract, bronchial epithelium, and lung. The airway cilia are distributed on the surface of respiratory epithelial cells, forming the first point of contact between the host and the inhaled coronaviruses. The function of the airway cilia is to oscillate and sense, thereby defending against and removing pathogens to maintain the cleanliness and patency of the respiratory tract. Following infection of the respiratory tract, coronaviruses exploit the cilia to invade and replicate in epithelial cells while also damaging the cilia to facilitate the spread and exacerbation of respiratory diseases. It is therefore imperative to investigate the interactions between coronaviruses and respiratory cilia, as well as to elucidate the functional mechanism of respiratory cilia following coronavirus invasion, in order to develop effective strategies for the prevention and treatment of respiratory viral infections. This review commences with an overview of the fundamental characteristics of airway cilia, and then, based on the interplay between airway cilia and coronavirus infection, we propose that ciliary protection and restoration may represent potential therapeutic approaches in emerging and re-emerging coronavirus pandemics.
Collapse
Affiliation(s)
| | - Ruodan Xu
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Ning Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| |
Collapse
|
2
|
Failayev H, Ganoth A, Tsfadia Y. Molecular insights on the coronavirus MERS-CoV interaction with the CD26 receptor. Virus Res 2024; 342:199330. [PMID: 38272241 PMCID: PMC10862065 DOI: 10.1016/j.virusres.2024.199330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
The Middle East respiratory syndrome (MERS) is a severe respiratory disease with high fatality rates, caused by the Middle East respiratory syndrome coronavirus (MERS-CoV). The virus initiates infection by binding to the CD26 receptor (also known as dipeptidyl peptidase 4 or DPP4) via its spike protein. Although the receptor-binding domain (RBD) of the viral spike protein and the complex between RBD and the extracellular domain of CD26 have been studied using X-ray crystallography, conflicting studies exist regarding the importance of certain amino acids outside the resolved RBD-CD26 complex interaction interface. To gain atomic-level knowledge of the RBD-CD26 complex, we employed computational simulations to study the complex's dynamic behavior as it evolves from its crystal structure to a conformation stable in solution. Our study revealed previously unidentified interaction regions and interacting amino acids within the complex, determined a novel comprehensive RBD-binding domain of CD26, and by that expanded the current understanding of its structure. Additionally, we examined the impact of a single amino acid substitution, E513A, on the complex's stability. We discovered that this substitution disrupts the complex through an allosteric domino-like mechanism that affects other residues. Since MERS-CoV is a zoonotic virus, we evaluated its potential risk of human infection via animals, and suggest a low likelihood for possible infection by cats or dogs. The molecular structural information gleaned from our insights into the RBD-CD26 complex pre-dissociative states may be proved useful not only from a mechanistic view but also in assessing inter-species transmission and in developing anti-MERS-CoV antiviral therapeutics.
Collapse
Affiliation(s)
- Hila Failayev
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Assaf Ganoth
- Department of Physical Therapy, School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; The Interdisciplinary Center (IDC), P.O. Box 167, Herzliya 4610101, Israel
| | - Yossi Tsfadia
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
3
|
Ding C, Chen Y, Miao G, Qi Z. Research Advances on the Role of Lipids in the Life Cycle of Human Coronaviruses. Microorganisms 2023; 12:63. [PMID: 38257890 PMCID: PMC10820681 DOI: 10.3390/microorganisms12010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Coronaviruses (CoVs) are emerging pathogens with a significant potential to cause life-threatening harm to human health. Since the beginning of the 21st century, three highly pathogenic and transmissible human CoVs have emerged, triggering epidemics and posing major threats to global public health. CoVs are enveloped viruses encased in a lipid bilayer. As fundamental components of cells, lipids can play an integral role in many physiological processes, which have been reported to play important roles in the life cycle of CoVs, including viral entry, uncoating, replication, assembly, and release. Therefore, research on the role of lipids in the CoV life cycle can provide a basis for a better understanding of the infection mechanism of CoVs and provide lipid targets for the development of new antiviral strategies. In this review, research advances on the role of lipids in different stages of viral infection and the possible targets of lipids that interfere with the viral life cycle are discussed.
Collapse
Affiliation(s)
- Cuiling Ding
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (C.D.); (Y.C.)
| | - Yibo Chen
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (C.D.); (Y.C.)
| | - Gen Miao
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China;
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (C.D.); (Y.C.)
| |
Collapse
|
4
|
Alaofi AL, Shahid M, Raish M, Ansari MA, Syed R, Kalam MA. Identification of Doxorubicin as Repurposing Inhibitory Drug for MERS-CoV PLpro. Molecules 2022; 27:7553. [PMID: 36364379 PMCID: PMC9654812 DOI: 10.3390/molecules27217553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 07/29/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV), belonging to the betacoronavirus genus can cause severe respiratory illnesses, accompanied by pneumonia, multiorgan failure, and ultimately death. CoVs have the ability to transgress species barriers and spread swiftly into new host species, with human-to-human transmission causing epidemic diseases. Despite the severe public health threat of MERS-CoV, there are currently no vaccines or drugs available for its treatment. MERS-CoV papain-like protease (PLpro) is a key enzyme that plays an important role in its replication. In the present study, we evaluated the inhibitory activities of doxorubicin (DOX) against the recombinant MERS-CoV PLpro by employing protease inhibition assays. Hydrolysis of fluorogenic peptide from the Z-RLRGG-AMC-peptide bond in the presence of DOX showed an IC50 value of 1.67 μM at 30 min. Subsequently, we confirmed the interaction between DOX and MERS-CoV PLpro by thermal shift assay (TSA), and DOX increased ΔTm by ~20 °C, clearly indicating a coherent interaction between the MERS-CoV PL protease and DOX. The binding site of DOX on MERS-CoV PLpro was assessed using docking techniques and molecular dynamic (MD) simulations. DOX bound to the thumb region of the catalytic domain of the MERS-CoV PLpro. MD simulation results showed flexible BL2 loops, as well as other potential residues, such as R231, R233, and G276 of MERS-CoV PLpro. Development of drug repurposing is a remarkable opportunity to quickly examine the efficacy of different aspects of treating various diseases. Protease inhibitors have been found to be effective against MERS-CoV to date, and numerous candidates are currently undergoing clinical trials to prove this. Our effort follows a in similar direction.
Collapse
Affiliation(s)
- Ahmed L. Alaofi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- College of Pharmacy Building 23, Pharmaceutics Department, King Saud University, Ground Floor, Office AA 79, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mushtaq Ahmad Ansari
- Department of Phamacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Rabbani Syed
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohd Abul Kalam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
IL-2 Flexible Loops Might Play a Role in IL-2 Interaction with the High-Affinity IL-2 Receptor: A Molecular Dynamics (MD) Study. J CHEM-NY 2022. [DOI: 10.1155/2022/3646375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The clinical use of high-dose IL-2 in cancer immunotherapy faces several drawbacks such as toxicity and unfavorable pharmacokinetic profile. These drawbacks can be avoided by inhibiting IL-2 interaction with the CD25 subunit, which is a component of the high-affinity IL-2 receptor (IL-2Rαβγ). Several studies showed mutations of potential IL-2 residues such as R38, F42, Y45, and Y72 would produce IL-2 that is CD25-independent. In essence, structural comparison between wild-type (WT) IL-2 and CD25-independent IL-2 can be very insightful to assess the role of IL-2 flexibility and conformation in the IL-2 receptor interactions. Here, we investigated the flexibility loops and conformation of IL-2m (F24A, Y45A, and L72G), which is known to be CD25-independent, and IL-2m2 (F42Y and L72R) mutants along with WT IL-2 using MD simulations. Despite residue mutations, both IL-2m and IL-2m2 showed comparable conformational compactness and better stability than WT IL-2. Interestingly, IL-2m and IL-2m2 mutants showed rigid BC and CD loops in comparison to WT IL-2 . Also, the AB loop conformation of IL-2m was a bent structure compared to the WT IL-2 and IL-2m2. Principal component analysis (PCA) and free-energy landscape results suggested IL-2m and IL-2m2 have stable conformations compared to the WT IL-2. Therefore, these mutation sites of IL-2 produced stable and rigid loops that might prevent IL-2 from binding to the CD25 subunit. Our results can help to assess IL-2 flexibility loops to design new CD25-independent IL-2 mutants without compromising the IL-2 structure.
Collapse
|
6
|
Role of Dipeptidyl Peptidase-4 (DPP4) on COVID-19 Physiopathology. Biomedicines 2022; 10:biomedicines10082026. [PMID: 36009573 PMCID: PMC9406088 DOI: 10.3390/biomedicines10082026] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
DPP4/CD26 is a single-pass transmembrane protein with multiple functions on glycemic control, cell migration and proliferation, and the immune system, among others. It has recently acquired an especial relevance due to the possibility to act as a receptor or co-receptor for SARS-CoV-2, as it has been already demonstrated for other coronaviruses. In this review, we analyze the evidence for the role of DPP4 on COVID-19 risk and clinical outcome, and its contribution to COVID-19 physiopathology. Due to the pathogenetic links between COVID-19 and diabetes mellitus and the hyperinflammatory response, with the hallmark cytokine storm developed very often during the disease, we dive deep into the functions of DPP4 on carbohydrate metabolism and immune system regulation. We show that the broad spectrum of functions regulated by DPP4 is performed both as a protease enzyme, as well as an interacting partner of other molecules on the cell surface. In addition, we provide an update of the DPP4 inhibitors approved by the EMA and/or the FDA, together with the newfangled approval of generic drugs (in 2021 and 2022). This review will also cover the effects of DPP4 inhibitors (i.e., gliptins) on the progression of SARS-CoV-2 infection, showing the role of DPP4 in this disturbing disease.
Collapse
|
7
|
Alaofi AL. The Glu143 Residue Might Play a Significant Role in T20 Peptide Binding to HIV-1 Receptor gp41: An In Silico Study. Molecules 2022; 27:molecules27123936. [PMID: 35745059 PMCID: PMC9229102 DOI: 10.3390/molecules27123936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Despite the enormous efforts made to develop other fusion inhibitors for HIV, the enfuvirtide (known as T20) peptide is the only approved HIV-1 inhibitory drug so far. Investigating the role of potential residues of the T20 peptide’s conformational dynamics could help us to understand the role of potential residues of the T20 peptide. We investigated T20 peptide conformation and binding interactions with the HIV-1 receptor (i.e., gp41) using MD simulations and docking techniques, respectively. Although the mutation of E143 into alanine decreased the flexibility of the E143A mutant, the conformational compactness of the mutant was increased. This suggests a potential role of E143 in the T20 peptide’s conformation. Interestingly, the free energy landscape showed a significant change in the wild-type T20 minimum, as the E143A mutant produced two observed minima. Finally, the docking results of T20 to the gp41 receptor showed a different binding interaction in comparison to the E143A mutant. This suggests that E143 residue can influence the binding interaction with the gp41 receptor. Overall, the E143 residue showed a significant role in conformation and binding to the HIV-1 receptor. These findings can be helpful in optimizing and developing HIV-1 inhibitor peptides.
Collapse
Affiliation(s)
- Ahmed L Alaofi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Abbad A, Anga L, Faouzi A, Iounes N, Nourlil J. Effect of identified non-synonymous mutations in DPP4 receptor binding residues among highly exposed human population in Morocco to MERS-CoV through computational approach. PLoS One 2021; 16:e0258750. [PMID: 34648601 PMCID: PMC8516309 DOI: 10.1371/journal.pone.0258750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/04/2021] [Indexed: 01/04/2023] Open
Abstract
Dipeptidyl peptidase 4 (DPP4) has been identified as the main receptor of MERS-CoV facilitating its cellular entry and enhancing its viral replication upon the emergence of this novel coronavirus. DPP4 receptor is highly conserved among many species, but the genetic variability among direct binding residues to MERS-CoV restrained its cellular tropism to humans, camels and bats. The occurrence of natural polymorphisms in human DPP4 binding residues is not well characterized. Therefore, we aimed to assess the presence of potential mutations in DPP4 receptor binding domain (RBD) among a population highly exposed to MERS-CoV in Morocco and predict their effect on DPP4 –MERS-CoV binding affinity through a computational approach. DPP4 synonymous and non-synonymous mutations were identified by sanger sequencing, and their effect were modelled by mutation prediction tools, docking and molecular dynamics (MD) simulation to evaluate structural changes in human DPP4 protein bound to MERS-CoV S1 RBD protein. We identified eight mutations, two synonymous mutations (A291 =, R317 =) and six non-synonymous mutations (N229I, K267E, K267N, T288P, L294V, I295L). Through docking and MD simulation techniques, the chimeric DPP4 –MERS-CoV S1 RBD protein complex models carrying one of the identified non-synonymous mutations sustained a stable binding affinity for the complex that might lead to a robust cellular attachment of MERS-CoV except for the DPP4 N229I mutation. The latter is notable for a loss of binding affinity of DPP4 with MERS-CoV S1 RBD that might affect negatively on cellular entry of the virus. It is important to confirm our molecular modelling prediction with in-vitro studies to acquire a broader overview of the effect of these identified mutations.
Collapse
Affiliation(s)
- Anass Abbad
- Medical Virology and BSL-3+ Laboratory, Institut Pasteur Morocco, Casablanca, Morocco
- Laboratoire d’Ecologie et d’Environnement, Faculté des Sciences Ben M’sik, Université Hassan II – Casablanca, Casablanca, Morocco
- * E-mail: (AA); (JN)
| | - Latifa Anga
- Medical Virology and BSL-3+ Laboratory, Institut Pasteur Morocco, Casablanca, Morocco
| | - Abdellah Faouzi
- Medical Virology and BSL-3+ Laboratory, Institut Pasteur Morocco, Casablanca, Morocco
| | - Nadia Iounes
- Laboratoire d’Ecologie et d’Environnement, Faculté des Sciences Ben M’sik, Université Hassan II – Casablanca, Casablanca, Morocco
| | - Jalal Nourlil
- Medical Virology and BSL-3+ Laboratory, Institut Pasteur Morocco, Casablanca, Morocco
- * E-mail: (AA); (JN)
| |
Collapse
|
9
|
Mutations of SARS-CoV-2 RBD May Alter Its Molecular Structure to Improve Its Infection Efficiency. Biomolecules 2021; 11:biom11091273. [PMID: 34572486 PMCID: PMC8466379 DOI: 10.3390/biom11091273] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 08/14/2021] [Indexed: 01/08/2023] Open
Abstract
The receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mediates the viral-host interaction and is a target for most neutralizing antibodies. Nevertheless, SARS-CoV-2 RBD mutations pose a threat due to their role in host cell entry via the human angiotensin-converting enzyme 2 receptor that might strengthen SARS-CoV-2 infectivity, viral load, or resistance against neutralizing antibodies. To understand the molecular structural link between RBD mutations and infectivity, the top five mutant RBDs (i.e., N501Y, E484K L452R, S477N, and N439K) were selected based on their recorded case numbers. These mutants along with wild-type (WT) RBD were studied through all-atom molecular dynamics (MD) simulations of 100 ns. The principal component analysis and the free energy landscape were used too. Interestingly, N501Y, N439K, and E484K mutations were observed to increase the rigidity in some RBD regions while increasing the flexibility of the receptor-binding motif (RBM) region, suggesting a compensation of the entropy penalty. However, S477N and L452R RBDs were observed to increase the flexibility of the RBM region while maintaining similar flexibility in other RBD regions in comparison to WT RBD. Therefore, both mutations (especially S477N) might destabilize the RBD structure, as loose conformation compactness was observed. The destabilizing effect of S477N RBD was consistent with previous work on S477N mutation. Finally, the free energy landscape results showed that mutations changed WT RBD conformation while local minima were maintained for all mutant RBDs. In conclusion, RBD mutations definitely impact the WT RBD structure and conformation as well as increase the binding affinity to angiotensin-converting enzyme receptor.
Collapse
|