1
|
Fuchs DI, Serio LD, Balaji S, Sprenger KG. Investigating how HIV-1 antiretrovirals differentially behave as substrates and inhibitors of P-glycoprotein via molecular dynamics simulations. Comput Struct Biotechnol J 2024; 23:2669-2679. [PMID: 39027651 PMCID: PMC11254953 DOI: 10.1016/j.csbj.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
HIV-1 can rapidly infect the brain upon initial infection, establishing latent reservoirs that induce neuronal damage and/or death, resulting in HIV-Associated Neurocognitive Disorder. Though anti-HIV-1 antiretrovirals (ARVs) suppress viral load, the blood-brain barrier limits drug access to the brain, largely because of highly expressed efflux proteins like P-glycoprotein (P-gp). While no FDA-approved P-gp inhibitor currently exists, HIV-1 protease inhibitors show promise as partial P-gp inhibitors, potentially enhancing drug delivery to the brain. Herein, we employed docking and molecular dynamics simulations to elucidate key differences in P-gp's interactions with several antiretrovirals, including protease inhibitors, with known inhibitory or substrate-like behaviors towards P-gp. Our results led us to hypothesize new mechanistic details of small-molecule efflux by and inhibition of P-gp, where the "Lower Pocket" in P-gp's transmembrane domain serves as the primary initial site for small-molecule binding. Subsequently, this pocket merges with the more traditionally studied drug binding site-the "Upper Pocket"-thus funneling small-molecule drugs, such as ARVs, towards the Upper Pocket for efflux. Furthermore, our results reinforce the understanding that both binding energetics and changes in protein dynamics are crucial in discerning small molecules as non-substrates, substrates, or inhibitors of P-gp. Our findings indicate that interactions between P-gp and inhibitory ARVs induce bridging of transmembrane domain helices, impeding P-gp conformational changes and contributing to the inhibitory behavior of these ARVs. Overall, insights gained in this study could serve to guide the design of future P-gp-targeting therapeutics for a wide range of pathological conditions and diseases, including HIV-1.
Collapse
Affiliation(s)
- Daisy I. Fuchs
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Lauren D. Serio
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Sahana Balaji
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Kayla G. Sprenger
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
2
|
Lanrewaju AA, Enitan-Folami AM, Nyaga MM, Sabiu S, Swalaha FM. Metabolites profiling and cheminformatics bioprospection of selected medicinal plants against the main protease and RNA-dependent RNA polymerase of SARS-CoV-2. J Biomol Struct Dyn 2024; 42:6740-6760. [PMID: 37464870 DOI: 10.1080/07391102.2023.2236718] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Abstract
Despite the existence of some vaccines, SARS-CoV-2 (S-2) infections persist for various reasons relating to vaccine reluctance, rapid mutation rate, and an absence of specific treatments targeted to the infection. Due to their availability, low cost and low toxicity, research into potentially repurposing phytometabolites as therapeutic alternatives has gained attention. Therefore, this study explored the antiviral potential of metabolites of some medicinal plants [Spondias mombin, Macaranga barteri and Dicerocaryum eriocarpum (Sesame plant)] identified using liquid chromatography-mass spectrometry (LCMS) as possible inhibitory agents against the S-2 main protease (S-2 MP) and RNA-dependent RNA polymerase (RP) using computational approaches. Molecular docking was used to identify the compounds with the best affinities for the selected therapeutics targets. Afterwards, compounds with poor physicochemical characteristics, pharmacokinetics, and drug-likeness were screened out. The top-ranked compounds were further subjected to a 120-ns molecular dynamics (MD) simulation. Only quercetin 3-O-rhamnoside (-48.77 kcal/mol) had higher binding free energy than the reference standard (zafirlukast) (-44.99 kcal/mol) against S-2 MP. Conversely, all the top-ranked compounds (ellagic acid hexoside, spiraeoside, apigenin-4'-glucoside and chrysoeriol 7-glucuronide) except gnetin L (-24.24 kcal/mol) had higher binding free energy (-55.19 kcal/mol, -52.75 kcal/mol, -47.22 kcal/mol and -43.35 kcal/mol) respectively, against S-2 RP relative to the reference standard (-34.79 kcal/mol). The MD simulations study further revealed that the investigated inhibitors are thermodynamically stable and form structurally compatible complexes that impede the regular operation of the respective S-2 therapeutic targets. Although, these S-2 therapeutic candidates are promising, further in vitro and in vivo evaluation is required and highly recommended.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adedayo Ayodeji Lanrewaju
- Department of Biotechnology and Food Science, Faculty of Applied Science, Durban University of Technology, Durban, South Africa
| | | | - Martin M Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Science, Durban University of Technology, Durban, South Africa
| | - Feroz Mahomed Swalaha
- Department of Biotechnology and Food Science, Faculty of Applied Science, Durban University of Technology, Durban, South Africa
| |
Collapse
|
3
|
Lu S, Zhang F, Gong J, Huang J, Zhu G, Zhao Y, Jia Q, Li Y, Li B, Chen K, Zhu W, Ge G. Design, synthesis and biological evaluation of chalcone derivatives as potent and orally active hCYP3A4 inhibitors. Bioorg Med Chem Lett 2023; 95:129435. [PMID: 37549850 DOI: 10.1016/j.bmcl.2023.129435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Human cytochrome P450 3A4 (hCYP3A4), one of the most important drug-metabolizing enzymes, catalyze the metabolic clearance of ∼50% therapeutic drugs. CYP3A4 inhibitors have been used for improving the in vivo efficacy of hCYP3A4-substrate drugs. However, most of existing hCYP3A4 inhibitors may trigger serious adverse effects or undesirable effects on endogenous metabolism. This study aimed to discover potent and orally active hCYP3A4 inhibitors from chalcone derivatives and to test their anti-hCYP3A4 effects both in vitro and in vivo. Following three rounds of screening and structural optimization, the isoquinoline chalcones were found with excellently anti-hCYP3A4 effects. SAR studies showed that introducing an isoquinoline ring on the A-ring significantly enhanced anti-CYP3A4 effect, generating A10 (IC50 = 102.10 nM) as a promising lead compound. The 2nd round of SAR studies showed that introducing a substituent group at the para position of the carbonyl group on B-ring strongly improved the anti-CYP3A4 effect. As a result, C6 was identified as the most potent hCYP3A4 inhibitor (IC50 = 43.93 nM) in human liver microsomes (HLMs). C6 also displayed potent anti-hCYP3A4 effect in living cells (IC50 = 153.00 nM), which was superior to the positive inhibitor ketoconazole (IC50 = 251.00 nM). Mechanistic studies revealed that C6 could potently inhibit CYP3A4-catalyzed N-ethyl-1,8-naphthalimide (NEN) hydroxylation in a competitive manner (Ki = 30.00 nM). Moreover, C6 exhibited suitable metabolic stability in HLMs and showed good safety profiles in mice. In vivo tests demonstrated that C6 (100 mg/kg, orally administration) significantly increased the AUC(0-inf) of midazolam by 3.63-fold, and strongly prolonged its half-life by 1.66-fold compared with the vehicle group in mice. Collectively, our findings revealed the SARs of chalcone derivatives as hCYP3A4 inhibitors and offered several potent chalcone-type hCYP3A4 inhibitors, while C6 could serve as a good lead compound for developing novel, orally active CYP3A4 inhibitors with improved druglikeness properties.
Collapse
Affiliation(s)
- Shiwei Lu
- School of Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Feng Zhang
- School of Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiahao Gong
- School of Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian Huang
- Pharmacology and Toxicology Division, Shanghai Institute of Food and Drug Control, Shanghai, China
| | - Guanghao Zhu
- School of Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yitian Zhao
- School of Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Qi Jia
- School of Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiming Li
- School of Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bo Li
- State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| | - Kaixian Chen
- School of Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Weiliang Zhu
- State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| | - Guangbo Ge
- School of Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Sulyman AO, Aje OO, Ajani EO, Abdulsalam RA, Balogun FO, Sabiu S. Bioprospection of Selected Plant Secondary Metabolites as Modulators of the Proteolytic Activity of Plasmodium falciparum Plasmepsin V. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6229503. [PMID: 37388365 PMCID: PMC10307063 DOI: 10.1155/2023/6229503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
Malaria is a devastating disease, and its management is only achieved through chemotherapy. However, resistance to available medication is still a challenge; therefore, there is an urgent need for the discovery and development of therapeutics with a novel mechanism of action to counter the resistance scourge consistent with the currently available antimalarials. Recently, plasmepsin V was validated as a therapeutic target for the treatment of malaria. The pepsin-like aspartic protease anchored in the endoplasmic reticulum is responsible for the trafficking of parasite-derived proteins to the erythrocytic surface of the host cells. In this study, a small library of compounds was preliminarily screened in vitro to identify novel modulators of Plasmodium falciparum plasmepsin V (PfPMV). The results obtained revealed kaempferol, quercetin, and shikonin as possible PfPMV inhibitors, and these compounds were subsequently probed for their inhibitory potentials using in vitro and in silico methods. Kaempferol and shikonin noncompetitively and competitively inhibited the specific activity of PfPMV in vitro with IC50 values of 22.4 and 43.34 μM, respectively, relative to 62.6 μM obtained for pepstatin, a known aspartic protease inhibitor. Further insight into the structure-activity relationship of the compounds through a 100 ns molecular dynamic (MD) simulation showed that all the test compounds had a significant affinity for PfPMV, with quercetin (-36.56 kcal/mol) being the most prominent metabolite displaying comparable activity to pepstatin (-35.72 kcal/mol). This observation was further supported by the compactness and flexibility of the resulting complexes where the compounds do not compromise the structural integrity of PfPMV but rather stabilized and interacted with the active site amino acid residues critical to PfPMV modulation. Considering the findings in this study, quercetin, kaempferol, and shikonin could be proposed as novel aspartic protease inhibitors worthy of further investigation in the treatment of malaria.
Collapse
Affiliation(s)
- Abdulhakeem Olarewaju Sulyman
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, P.M.B. 1530, Malete, Ilorin, Nigeria
| | - Oluwapelumi Oluwaseun Aje
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, P.M.B. 1530, Malete, Ilorin, Nigeria
| | - Emmanuel Oladipo Ajani
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, P.M.B. 1530, Malete, Ilorin, Nigeria
| | - Rukayat Abiola Abdulsalam
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Fatai Oladunni Balogun
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
5
|
Idowu KA, Onyenaka C, Olaleye OA. A computational evaluation of structural stability of omicron and delta mutations of SARS-CoV-2 spike proteins and human ACE-2 interactions. INFORMATICS IN MEDICINE UNLOCKED 2022; 33:101074. [PMID: 36092780 PMCID: PMC9450468 DOI: 10.1016/j.imu.2022.101074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/04/2022] Open
Abstract
Several more infectious SARS-CoV-2 variants have emerged globally since SARS-CoV-2 pandemic and the discovery of the first D614G variant of SARS-CoV-2 spike proteins in 2020. Delta (B.1.617.2) and Omicron (B.1.1.529) variants have proven to be of major concern out of all the reported variants, considering their influence on the virus' transmissibility and severity. This study aimed at evaluating the impact of mutations on these two variants on stability and molecular interactions between the viral Spike protein and human angiotensin converting enzyme-2 (hACE-2). The spike proteins receptor binding domain (RBD) was docked with the hACE-2 using HADDOCK servers. To understand and establish the effects of the mutations on the structural stability and flexibility of the RBD-hACE-2 complex, molecular dynamic (MD) simulation of the docked complex was performed and evaluated. The findings from both molecular docking analysis and binding free energy showed that the Omicron (OM) variant has high receptiveness towards hACE-2 versus Delta variant (DT), thereby, responsible for its increase in transmission. The structural stability and flexibility evaluation of variants' systems showed that mutations on DT and OM variants disturbed the stability of either the spike protein or the RBD-hACE-2 complex, with DT variant having greater instability impact. This study, therefore, assumed this obvious instability observed in DT variant might be associated or responsible for the reported severity in DT variant disease over the OM variant disease. This study provides molecular insight into the effects of OM and DT variants on stability and interactions between SARS-CoV-2 protein and hACE-2.
Collapse
Affiliation(s)
- Kehinde A Idowu
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, TX, 77004, USA
| | - Collins Onyenaka
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, TX, 77004, USA
| | - Omonike A Olaleye
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, TX, 77004, USA
| |
Collapse
|
6
|
Guttman Y, Kerem Z. Computer-Aided (In Silico) Modeling of Cytochrome P450-Mediated Food–Drug Interactions (FDI). Int J Mol Sci 2022; 23:ijms23158498. [PMID: 35955630 PMCID: PMC9369352 DOI: 10.3390/ijms23158498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Modifications of the activity of Cytochrome 450 (CYP) enzymes by compounds in food might impair medical treatments. These CYP-mediated food–drug interactions (FDI) play a major role in drug clearance in the intestine and liver. Inter-individual variation in both CYP expression and structure is an important determinant of FDI. Traditional targeted approaches have highlighted a limited number of dietary inhibitors and single-nucleotide variations (SNVs), each determining personal CYP activity and inhibition. These approaches are costly in time, money and labor. Here, we review computational tools and databases that are already available and are relevant to predicting CYP-mediated FDIs. Computer-aided approaches such as protein–ligand interaction modeling and the virtual screening of big data narrow down hundreds of thousands of items in databanks to a few putative targets, to which the research resources could be further directed. Structure-based methods are used to explore the structural nature of the interaction between compounds and CYP enzymes. However, while collections of chemical, biochemical and genetic data are available today and call for the implementation of big-data approaches, ligand-based machine-learning approaches for virtual screening are still scarcely used for FDI studies. This review of CYP-mediated FDIs promises to attract scientists and the general public.
Collapse
|
7
|
Bokosi FRB, Beteck RM, Jordaan A, Seldon R, Warner DF, Tshiwawa T, Lobb K, Khanye SD. Arylquinolinecarboxamides: Synthesis,
in vitro
and
in silico
studies against
Mycobacterium tuberculosis
. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fostino R. B. Bokosi
- Department of Chemistry, Faculty of Science Rhodes University Makhanda South Africa
| | - Richard M. Beteck
- Department of Chemistry, Faculty of Science Rhodes University Makhanda South Africa
- Centre of Excellence for Pharmaceutical Sciences North‐West University Potchefstroom South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine University of Cape Town Cape Town South Africa
| | - Ronnet Seldon
- SAMRC Drug Discovery and Development Unit University of Cape Town Cape Town South Africa
| | - Digby F. Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine University of Cape Town Cape Town South Africa
- Wellcome Centre for Infectious Diseases Research in Africa University of Cape Town Cape Town South Africa
| | | | - Kevin Lobb
- Department of Chemistry, Faculty of Science Rhodes University Makhanda South Africa
| | - Setshaba D. Khanye
- Department of Chemistry, Faculty of Science Rhodes University Makhanda South Africa
- Centre for Chemico‐ and Biomedicinal Research Rhodes University Makhanda South Africa
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy Rhodes University Makhanda South Africa
| |
Collapse
|
8
|
Sabiu S, Balogun FO, Amoo SO. Phenolics Profiling of Carpobrotus edulis (L.) N.E.Br. and Insights into Molecular Dynamics of Their Significance in Type 2 Diabetes Therapy and Its Retinopathy Complication. Molecules 2021; 26:molecules26164867. [PMID: 34443458 PMCID: PMC8401050 DOI: 10.3390/molecules26164867] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 01/04/2023] Open
Abstract
Adverse effects associated with synthetic drugs in diabetes therapy has prompted the search for novel natural lead compounds with little or no side effects. Effects of phenolic compounds from Carpobrotus edulis on carbohydrate-metabolizing enzymes through in vitro and in silico methods were assessed. Based on the half-maximal inhibitory concentrations (IC50), the phenolic extract of the plant had significant (p < 0.05) in vitro inhibitory effect on the specific activity of alpha-amylase (0.51 mg/mL), alpha-glucosidase (0.062 mg/mL) and aldose reductase (0.75 mg/mL), compared with the reference standards (0.55, 0.72 and 7.05 mg/mL, respectively). Molecular interactions established between the 11 phenolic compounds identifiable from the HPLC chromatogram of the extract and active site residues of the enzymes revealed higher binding affinity and more structural compactness with procyanidin (−69.834 ± 6.574 kcal/mol) and 1,3-dicaffeoxyl quinic acid (−42.630 ± 4.076 kcal/mol) as potential inhibitors of alpha-amylase and alpha-glucosidase, respectively, while isorhamnetin-3-O-rutinoside (−45.398 ± 4.568 kcal/mol) and luteolin-7-O-beta-d-glucoside (−45.102 ± 4.024 kcal/mol) for aldose reductase relative to respective reference standards. Put together, the findings are suggestive of the compounds as potential constituents of C. edulis phenolic extract responsible for the significant hypoglycemic effect in vitro; hence, they could be exploited in the development of novel therapeutic agents for type-2 diabetes and its retinopathy complication.
Collapse
Affiliation(s)
- Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa;
- Correspondence:
| | - Fatai O. Balogun
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa;
| | - Stephen O. Amoo
- Agricultural Research Council—Vegetables, Industrial and Medicinal Plants, Pretoria, Private Bag X293, Pretoria 0001, South Africa;
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| |
Collapse
|
9
|
Obakachi VA, Kushwaha ND, Kushwaha B, Mahlalela MC, Shinde SR, Kehinde I, Karpoormath R. Design and synthesis of pyrazolone-based compounds as potent blockers of SARS-CoV-2 viral entry into the host cells. J Mol Struct 2021; 1241:130665. [PMID: 34007088 PMCID: PMC8118388 DOI: 10.1016/j.molstruc.2021.130665] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/26/2021] [Accepted: 05/09/2021] [Indexed: 11/24/2022]
Abstract
SARS-CoV-2 are enveloped positive-stranded RNA viruses that replicate in the cytoplasm. It relies on the fusion of their envelope with the host cell membrane to deliver their nucleocapsid into the host cell. The spike glycoprotein (S) mediates virus entry into cells via the human Angiotensin-converting enzyme 2 (hACE2) protein located on many cell types and tissues' outer surface. This study, therefore, aimed to design and synthesize novel pyrazolone-based compounds as potential inhibitors that would interrupt the interaction between the viral spike protein and the host cell receptor to prevent SARS-CoV 2 entrance into the cell. A series of pyrazolone compounds as potential SARS-CoV-2 inhibitors were designed and synthesized. Employing computational techniques, the inhibitory potentials of the designed compounds against both spike protein and hACE2 were evaluated. Results of the binding free energy from the in-silico analysis, showed that three compounds (7i, 7k and 8f) and six compounds (7b, 7h, 7k, 8d, 8g, and 8h) showed higher and better binding high affinity to SARS-CoV-2 Sgp and hACE-2, respectively compared to the standard drugs cefoperazone (CFZ) and MLN-4760. Furthermore, the outcome of the structural analysis of the two proteins upon binding of the inhibitors showed that the two proteins (SARS-CoV-2 Sgp and hACE-2) were stable, and the structural integrity of the proteins was not compromised. This study suggests pyrazolone-based compounds might be potent blockers of the viral entry into the host cells.
Collapse
Affiliation(s)
- Vincent A Obakachi
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Babita Kushwaha
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Mavela Cleopus Mahlalela
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Suraj Raosaheb Shinde
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Idowu Kehinde
- School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
10
|
Kushwaha B, Kushwaha ND, Parish T, Guzman J, Kajee A, Shaikh MS, Kehinde I, Obakachi VA, Pathan TK, Shinde SR, Karpoormath R. A New Class of Linezolid‐Based Molecules as Potential Antimicrobial and Antitubercular Agents: A Rational Approach. ChemistrySelect 2021. [DOI: 10.1002/slct.202100493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Babita Kushwaha
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal, Westville Campus Durban South Africa
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal, Westville Campus Durban South Africa
| | - Tanya Parish
- Infectious Disease Research Institute Seattle Washington United States of America
- Center for Global Infectious Disease Research, Seattle Children's Research Institute Seattle Washington USA
| | - Junitta Guzman
- Infectious Disease Research Institute Seattle Washington United States of America
| | - Afsana Kajee
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal, Westville Campus Durban South Africa
- Department of Microbiology National Health Laboratory Services (NHLS) Inkosi Albert Luthuli Central Hospital Durban South Africa
| | - Mahamadhanif S. Shaikh
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal, Westville Campus Durban South Africa
| | - Idowu Kehinde
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP)/Genomics Unit School of Laboratory Medicine and Medical Sciences College of Health Sciences Nelson R Mandela School of Medicine University of KwaZulu-Natal Medical Campus Durban 4001 South Africa
| | - Vincent A. Obakachi
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal, Westville Campus Durban South Africa
| | - Tabasum Khan Pathan
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal, Westville Campus Durban South Africa
| | - Suraj Raosaheb Shinde
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal, Westville Campus Durban South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal, Westville Campus Durban South Africa
| |
Collapse
|