1
|
Bai S, Wan S, Li M, Wu R, Tang S, Wang F, Chen L, Lv X, Wei X, Feng S, Zhang M. Novel 2-aminothiazole derivatives incorporating 9-alkyl purine moiety: design, synthesis, crystal structure, and bioactivity evaluation. Mol Divers 2025:10.1007/s11030-025-11190-x. [PMID: 40221614 DOI: 10.1007/s11030-025-11190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
A series of 2-aminothiazole derivatives (3A1-3A30) containing 9-alkyl purine moiety were designed and synthesized to explore novel antibacterial agents with unique structures and potent antibacterial activity. The structures of target compounds were characterized using 1H NMR, 13C NMR, and HRMS techniques. The structure of compound 3A12 was further elucidated through single crystal X-ray diffraction analysis. Results from antibacterial activity tests indicated that compound 3A7 exhibited a significant inhibitory effect on Xanthomonas oryzae pv. oryzicola (Xoc), with an EC50 (half-maximal effective concentration) value of 25.5 μg/mL, which was more than three times higher than that of the control agent thiodiazole copper (EC50 = 78.4 μg/mL). Compound 3A25 has a strong inhibitory effect on Xanthomonas axonopodis pv. citric (Xac), with significantly higher activity than thiodiazole copper in terms of EC50 value (47.3 vs 92.1 µg/mL). Additionally, the EC50 value of compound 3A7 against Pseudomonas syringae pv. actinidiae (Psa) was measured at 57.5 µg/mL, demonstrating superior efficacy relative to the control agents bismerthiazol (EC50 = 92.9 µg/mL) and thiodiazole copper (EC50 = 90.2 µg/mL). The antibacterial mechanism of compound 3A7 was examined through an investigation into the production of exopolysaccharides, alterations in membrane permeability, morphological changes in bacterial cells, and the development of a molecular docking model. Through a 100 ns molecular dynamics (MD) simulation, the stability of the binding between compound 3A7 and the AvrRxo1-ORF1 protein was confirmed. Furthermore, the chemical reactivity of potential bioactive compounds was evaluated using density functional theory (DFT).
Collapse
Affiliation(s)
- Song Bai
- Guizhou Industry Polytechnic College, Guiyang, 550008, People's Republic of China.
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, 550003, People's Republic of China.
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, People's Republic of China.
| | - Suran Wan
- Guizhou Industry Polytechnic College, Guiyang, 550008, People's Republic of China.
| | - Miao Li
- Guizhou Industry Polytechnic College, Guiyang, 550008, People's Republic of China
| | - Rong Wu
- Guizhou Industry Polytechnic College, Guiyang, 550008, People's Republic of China
| | - Shouying Tang
- Guizhou Industry Polytechnic College, Guiyang, 550008, People's Republic of China
| | - Fang Wang
- Guizhou Industry Polytechnic College, Guiyang, 550008, People's Republic of China
| | - Lijun Chen
- Guizhou Industry Polytechnic College, Guiyang, 550008, People's Republic of China
| | - Xiaokang Lv
- Guizhou Industry Polytechnic College, Guiyang, 550008, People's Republic of China
| | - Xian Wei
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, 550003, People's Republic of China
| | - Shuang Feng
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, 550003, People's Republic of China
| | - Miaohe Zhang
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, 550003, People's Republic of China
| |
Collapse
|
2
|
Shaibat Alhamd MA, Gawad OFA, Eldin ZE, Elzanaty AM, Arafa EG. Schiff's base transformation: Enhancing biological activity of xanthan gum by grafting with acrylonitrile. Int J Biol Macromol 2025; 307:142354. [PMID: 40120902 DOI: 10.1016/j.ijbiomac.2025.142354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/09/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
The graft copolymerization of acrylonitrile (ACN) onto xanthan gum (XG) was performed via free radical polymerization using ammonium persulfate (APS) as the initiator. Key parameters influencing the grafting process were optimized, and Schiff base derivatives were synthesized through reactions with aromatic aldehydes to modify the grafted copolymer further. The modified copolymers were characterized using FT-IR, X-ray diffraction, thermal analysis, and scanning electron microscopy. This study evaluated the antimicrobial and antifungal efficacy of Ethylene diamine-modified XG-g-PAN compounds. EDA XG-g-PAN V exhibited the strongest antibacterial activity against Gram-positive and Gram-negative bacteria, exhibiting the lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. For antifungal activity against C. albicans, XG-g-PAN III and EDA XG-g-PAN V were most effective, with MIC values of 62.5 μg/mL and 83 μg/mL, respectively. EDA XG-g-PAN V significantly inhibited S. aureus growth over 24 h and demonstrated dose-dependent bacterial membrane disruption, as evidenced by protein leakage assays. The cytotoxic effects of EDA XG-g-PAN V were tested on HL-7702 liver cells, NIH3T3 fibroblast cells, and HaCaT keratinocytes, showing a concentration-dependent response. At lower doses (<125 μg/mL), cell viability exceeded 80 %, indicating good compatibility for biomedical use, whereas higher doses (>500 μg/mL) significantly reduced viability to around 60 %.
Collapse
Affiliation(s)
| | - Omayma Fawzy Abdel Gawad
- Department of Chemistry, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt; Petroleum Chemistry, Faculty of Basic Sciences, King Salman International University, South Saini, Egypt
| | - Zienab E Eldin
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Ali M Elzanaty
- Department of Chemistry, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Esraa G Arafa
- Department of Chemistry, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt.
| |
Collapse
|
3
|
Prome AA, Robin TB, Ahmed N, Rani NA, Ahmad I, Patel H, Bappy MNI, Zinnah KMA. A reverse docking approach to explore the anticancer potency of natural compounds by interfering metastasis and angiogenesis. J Biomol Struct Dyn 2024; 42:7174-7189. [PMID: 37526218 DOI: 10.1080/07391102.2023.2240895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
Angiogenesis, which results in the formation of new blood and lymph vessels, is required to serve metastatic cancer progression. Cancer medications may target these two interconnected pathways. Phytocompounds have emerged as promising options for treating cancer. In this study, we used a reverse docking strategy to find new candidate molecules for cancer treatment that target both pathways. Following a literature study, the important cancer-causing proteins vascular endothelial growth factor D (VEGF-D) and basic fibroblast growth factor (bFGF) for angiogenesis and matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) for the metastatic pathway were targeted. Protein Data Bank was used to retrieve the structures of chosen proteins. 22 significant plant metabolites were identified as having anticancer activity. To determine the important protein binding residues, active site prediction was used. Using Lenvatinib and Withaferin A as reference ligands, the binding affinity of certain proteins for plant metabolites was determined by docking analysis. Homoharringtonine and viniferin, both have higher binding affinities when compared to reference ligands, with docking scores of -180.96 and -180.36 against the protein MMP-9, respectively. Moreover, Viniferin showed the highest binding affinity with both MMP-9 and MMP-2 proteins, which were then subjected to a 100-ns molecular dynamic simulation. where they were found to be significantly stable. In pharmacoinformatics investigations, the majority of our compounds were found to be non-toxic for the host. In this study, we suggested natural substances as cutting-edge anticancer treatments that target both angiogenesis and metastasis, which may aid in accelerating drug development and identifying viable therapeutic candidates.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anindita Ash Prome
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Tanjin Barketullah Robin
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Nadim Ahmed
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Nurul Amin Rani
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Dhule, Maharashtra, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Md Nazmul Islam Bappy
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Kazi Md Ali Zinnah
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| |
Collapse
|
4
|
Mohamed MAF, Benjamin I, Okon GA, Ahmad I, Khan SAPM, Patel H, Agwamba EC, Louis H. Insights into in-vitro studies and molecular modelling of the antimicrobial efficiency of 4-chlorobenzaldehyde and 4-methoxybenzaldehyde derivatives. J Biomol Struct Dyn 2024; 42:6042-6064. [PMID: 37504959 DOI: 10.1080/07391102.2023.2239917] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
Owing to the significant gap in the knowledge and understanding of the mechanisms of antimicrobial action and the development of resistance, the optimization of antimicrobial therapies therefore becomes a necessity. It is on this note, that this study seeks to both experimentally and theoretically investigate the antimicrobial efficiency of two synthesized compounds namely; 1-((4-methoxyphenyl) (morpholino)methyl)thiourea (MR1) and diethyl 4-(4-chlorophenyl)-2,6-diphenyl-1,4-dihydropyridine-3,5-dicarboxylate (HRC). Utilizing the density functional theory (DFT), the compounds were optimized at ωB97XD/6-31++G(2d, 2p) level of theory. This provided a clear explanation for their distinct reactivity and stability potentials. More so, the natural bond orbital (NBO) analysis confirmed strong intra and intermolecular interactions, which agreed with the calculated reactivity parameters and density of states (DOS). Upon assessing the antimicrobial efficacy of the synthesized compounds, it was found that they exhibited lower activity against Enterobacter and A. niger, but considerable activity against Moraxella. In contrast, they showed higher activity against B. subtilis and Trichophyton, indicating that the compounds are more effective against gram-positive bacteria than gram-negative ones. Hence, it can be asserted that the synthesized compounds have superior antifungal action than antibacterial activity. A fascinating aspect of the data is that they show interactions that are incredibly insightful, totally correlating with the simulations of both molecular docking and molecular dynamics. Therefore, the alignment between experimental findings and computational simulations strengthens the validity of the study's conclusions, emphasizing the significance of the synthesized compounds in the context of optimizing antimicrobial therapies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mashood A F Mohamed
- PG and Research Department of Chemistry, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Gideon A Okon
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Dhule, Maharashtra, India
| | - Syed A P M Khan
- PG and Research Department of Chemistry, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu, India
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Ernest C Agwamba
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
5
|
Hossain FMA, Bappy MNI, Robin TB, Ahmad I, Patel H, Jahan N, Rabbi MGR, Roy A, Chowdhury W, Ahmed N, Prome AA, Rani NA, Khan P, Zinnah KMA. A review on computational studies and bioinformatics analysis of potential drugs against monkeypox virus. J Biomol Struct Dyn 2024; 42:6091-6107. [PMID: 37403283 DOI: 10.1080/07391102.2023.2231542] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/23/2023] [Indexed: 07/06/2023]
Abstract
Monkeypox, a viral disease that is caused by monkeypox virus and occurs mainly in central and western Africa. However, recently it is spreading worldwide and took the focus of the scientific world towards it. Therefore, we made an attempt to cluster all the related information that may make it easy for the researchers to get the information easily and carry out their research smoothly to find prophylaxis against this emerging virus. There are very few researches found available on monkeypox. Almost all the studies were focused on smallpox virus and the recommended vaccines and therapeutics for monkeypox virus were originally developed for smallpox virus. Though these are recommended for emergency cases, they are not fully effective and specific against monkeypox. For this, here we also took the help of bioinformatics tools to screen potential drug candidates against this growing burden. Some potential antiviral plant metabolites, inhibitors and available drugs were scrutinized that can block the essential survival proteins of this virus. All the compounds Amentoflavone, Pseudohypericin, Adefovirdipiboxil, Fialuridin, Novobiocin and Ofloxacin showed elite binding efficiency with suitable ADME properties and Amentoflavone and Pseudohypericin showed stability in MD simulation study indicating their potency as probable drugs against this emerging virus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ferdaus Mohd Altaf Hossain
- Faculty of Veterinary, Animal and Biomedical Science, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Dairy Science, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md Nazmul Islam Bappy
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Tanjin Barketullah Robin
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Dhule, Maharashtra, India
| | - Harun Patel
- Department of Pharmaceutical Chemistry, Division of Computer Aided Drug Design, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Nusrat Jahan
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md Gulam Rabbany Rabbi
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Anindita Roy
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Wasima Chowdhury
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Nadim Ahmed
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Anindita Ash Prome
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Nurul Amin Rani
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Parvez Khan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kazi Md Ali Zinnah
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| |
Collapse
|
6
|
Patel KB, Patel RV, Ahmad I, Rajani D, Patel H, Mukherjee S, Kumari P. Design, synthesis, molecular docking, molecular dynamic simulation, and MMGBSA analysis of 7-O-substituted 5-hydroxy flavone derivatives. J Biomol Struct Dyn 2024; 42:6378-6392. [PMID: 37551031 DOI: 10.1080/07391102.2023.2243520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/01/2023] [Indexed: 08/09/2023]
Abstract
A series of chrysin derivatives were designed, synthesized, and evaluated for their antibacterial activity against four different bacterial strains. We have synthesized new propyl-substituted and butyl-substituted chrysin-piperazine derivatives, which show marvellous inhibition against E. coli and S. aureus. The free hydroxyl group at the C-5 position of chrysin improved therapeutic efficacy in vivo and was a beneficial formulation for chemotherapy. All synthesized compounds were confirmed by various spectroscopic techniques such as IR, NMR, HPLC, and mass spectrometry. The compounds exhibited moderate to good inhibition, and their structure-activity relationship (SAR) has also been illustrated. Among the synthesised compounds, compounds 4 and 10 were the most active against S. pyogenes and E. coli, with 12.5 g/mL MICs; additionally, compound 12 exhibits significant activity on both the S. aureus and E. coli stains. Based on the promising activity profile and docking score of compound 12, it was selected for 100 ns MD simulation and post-dynamic binding free energy analysis within the active sites of S. aureus TyrRS (PDB ID: 1JIJ) and E. coli DNA GyrB (PDB ID: 6YD9) to investigate the stability of molecular contacts and to establish how the newly synthesized inhibitors fit together in the most stable conformations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kajalben B Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | - Rahul V Patel
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, Korea
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Dhule, Maharashtra, India
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | | | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | | | - Premlata Kumari
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| |
Collapse
|
7
|
Naik HN, Kanjariya D, Parveen S, Meena A, Ahmad I, Patel H, Meena R, Jauhari S. Dalbergia sissoo phytochemicals as EGFR inhibitors: an in vitro and in silico approach. J Biomol Struct Dyn 2024; 42:5415-5427. [PMID: 37394798 DOI: 10.1080/07391102.2023.2229437] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/11/2023] [Indexed: 07/04/2023]
Abstract
The safest and most effective sources of medications are natural and traditional medicines derived from plants and herbs. In Western India, various parts of the Dalbergia sissoo plant, which belongs to the Fabaceae family, have been traditionally used to treat different types of cancer by the local tribes. However, this claim has not been scientifically proven yet. Thus, the purpose of this study was to examine the antioxidant (2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity) and anticancer effects of different plant extracts from Dalbergia sissoo bark, root, and branch on six different cancer cell lines (K562, PC3, A431, A549, NCIH 460, and HEK 293 T) using in vitro cell viability and cytotoxicity assays. The study also involved in silico docking, MD simulation, and ADME studies of previously reported bioactive compounds from the same parts of the plant to confirm their bioactivity. The DPPH radical scavenging experiment findings showed that the methanol: water extract of the bark had a more significant antioxidant activity IC50 (45.63 ± 1.24 mg/mL). Furthermore, the extract prevented the growth of the A431, A549, and NCIH 460 cancer cell lines with the lowest IC50 values of 15.37, 29.09, and 17.02 g/mL, respectively, demonstrating remarkable anticancer potential. Molecular docking and dynamic simulation studies revealed that Prunetin, Tectorigenin, and Prunetin 4'-O-Galactoside show efficient binding to the EGFR binding domain. This study suggests that tested hits may have antioxidant and anticancer agents and can be considered for future applications in the pharma sector.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hem N Naik
- Department of Chemistry, SV National Institute of Technology, Surat, India
| | - Dilip Kanjariya
- Department of Chemistry, SV National Institute of Technology, Surat, India
| | - Shahnaz Parveen
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Abha Meena
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Dhule, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Ramavatar Meena
- Natural Product and Green Chemistry Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, India
| | - Smita Jauhari
- Department of Chemistry, SV National Institute of Technology, Surat, India
| |
Collapse
|
8
|
El Bakri Y, Karthikeyan S, Lai CH, Bakhite EA, Ahmad I, Abdel-Rahman AE, Abuelhassan S, Marae IS, Mohamed SK, Mague JT. New tetrahydroisoquinoline-4-carbonitrile derivatives as potent agents against cyclin-dependent kinases, crystal structures, and computational studies. J Biomol Struct Dyn 2024; 42:5053-5071. [PMID: 38764131 DOI: 10.1080/07391102.2023.2224899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/07/2023] [Indexed: 05/21/2024]
Abstract
The synthesis of two new hexahydroisoquinoline-4-carbonitrile derivatives (3a and 3b) is reported along with spectroscopic data and their crystal structures. In compound 3a, the intramolecular O-H···O hydrogen bond constraints the acetyl and hydroxyl groups to be syn. In the crystal, inversion dimers are generated by C-H···O hydrogen bonds and are connected into layers parallel to (10-1) by additional C-H···O hydrogen bonds. The layers are stacked with Cl···S contacts 0.17 Å less than the sum of the respective van der Waals radii. The conformation of the compound 3b is partially determined by the intramolecular O-H···O hydrogen bond. A puckering analysis of the tetrahydroisoquinoline unit was performed. In the crystal, O-H···O and C-H···O hydrogen bonds together with C-H···π(ring) interactions form layers parallel to (01-1) which pack with normal van der Waals interactions. To understand the binding efficiency and stability of the title molecules, molecular docking, and 100 ns dynamic simulation analyses were performed with CDK5A1. To rationalize their structure-activity relationship(s), a DFT study at the B3LYP/6-311++G** theoretical level was also done. The 3D Hirshfled surfaces were also taken to investigate the crystal packings of both compounds. In addition, their ADMET properties were explored.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Chelyabinsk, Russia
| | - Subramani Karthikeyan
- Division of Physics, school of advanced science, Vellore Institute of Technology, Chennai Campus, Chennai, Tamil Nadu, India
| | - Chin-Hung Lai
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | | | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Maharashtra, India
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | | | | | - Islam S Marae
- Department of Chemistry, Assiut University, Assiut, Egypt
| | - Shaaban K Mohamed
- Chemistry and Environmental Division, Manchester Metropolitan University, Manchester, England
- Chemistry Department, Minia University, El-Minia, Egypt
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, Los Angeles, USA
| |
Collapse
|
9
|
Zala AR, Tiwari R, Naik HN, Ahmad I, Patel H, Jauhari S, Kumari P. Design and synthesis of pyrrolo[2,3-d]pyrimidine linked hybrids as α-amylase inhibitors: molecular docking, MD simulation, ADMET and antidiabetic screening. Mol Divers 2024; 28:1681-1695. [PMID: 37344700 DOI: 10.1007/s11030-023-10683-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Novel pyrrolo[2,3-d]pyrimidine-based analogues were designed, synthesized, and evaluated for their ability to inhibit the α-amylase enzyme in order to treat diabetes. In vitro antidiabetic analysis demonstrated excellent antidiabetic action for compounds 5b, 6c, 7a, and 7b, with IC50 values in the 0.252-0.281 mM range. At a 200 μg/mL concentration, the exceptional percent inhibition values for compounds 5a, 5b, 5d, and 6a varied from 97.79 ± 2.86% to 85.56 ± 4.13% overperforming the standard (acarbose). Molecular docking of all compounds performed with Bacillus paralicheniformis α-amylase enzyme. The most active compounds via in vitro and non-toxic via in silico ADMET and molecular docking analysis, hybrids 6c, 7a, and 7b displayed binding affinity from - 8.2 and - 8.5 kcal/mol. Molecular dynamic simulations of most active compound 5b and 7a investigated into the active sites of the Bacillus paralicheniformis α-amylase enzyme for a 100-ns indicating the stability of hybrid-protein complex. Consistent RGyr values for the two complexes under study further suggest that the system's proteins are closely packed in the dynamic state. Synthesized analogs' in vitro biological assessments, ADMET, molecular docking, and MD modelling reveal that 5b, 6c, 7a, and 7b hybrid analogs may be employed in the development of future antidiabetic drugs.
Collapse
Affiliation(s)
- Ajayrajsinh R Zala
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India
| | - Ramgopal Tiwari
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India
| | - Hem N Naik
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, Maharashtra, 424002, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Smita Jauhari
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India
| | - Premlata Kumari
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India.
| |
Collapse
|
10
|
El Bakri Y, Ahmad B, Saravanan K, Ahmad I, Bakhite EA, Younis O, Al-Waleedy SAH, Ibrahim OF, Nafady A, Mague JT, Mohamed SK. Insight into crystal structures and identification of potential styrylthieno[2,3- b]pyridine-2-carboxamidederivatives against COVID-19 Mpro through structure-guided modeling and simulation approach. J Biomol Struct Dyn 2024; 42:4325-4343. [PMID: 37318002 DOI: 10.1080/07391102.2023.2220799] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/28/2023] [Indexed: 06/16/2023]
Abstract
Anti-SARS-CoV-2 drugs are urgently needed to prevent the pandemic and for immunization. Their protease inhibitor treatment for COVID-19 has been used in clinical trials. In Calu-3 and THP1 cells, 3CL SARS-CoV-2 Mpro protease is required for viral expression, replication, and the activation of the cytokines IL-1, IL-6, and TNF-. The Mpro structure was chosen for this investigation because of its activity as a chymotrypsin-like enzyme and the presence of a cysteine-containing catalytic domain. Thienopyridine derivatives increase the release of nitric oxide from coronary endothelial cells, which is an important cell signaling molecule with antibacterial activity against bacteria, protozoa, and some viruses. Using DFT calculations, global descriptors are computed from HOMO-LUMO orbitals; the molecular reactivity sites are analyzed from an electrostatic potential map. NLO properties are calculated, and topological analysis is also part of the QTAIM studies. Both compounds 1 and 2 were designed from the precursor molecule pyrimidine and exhibited binding energies (-14.6708 kcal/mol and -16.4521 kcal/mol). The binding mechanisms of molecule 1 towards SARS-COV-2 3CL Mpro exhibited strong hydrogen bonding as well as Vdw interaction. In contrast, derivative 2 was bound to the active site protein's active studied that several residues and positions, including (His41, Cys44, Asp48, Met49, Pro52, Tyr54, Phe140, Leu141, Ser144, His163, Ser144, Cys145, His164, Met165, Glu166, Leu167, Asp187, Gln189, Thr190, and GLn192) are critical for the maintenance of inhibitors inside the active pocket. Molecular docking and 100 ns MD simulation analysis revealed that Both compounds 1 and 2 with higher binding affinity and stability toward the SARS-COV-2 3CL Mpro protein. Binding free energy calculations and other MD parameters support the finding.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Chelyabinsk, Russian Federation
| | - Basharat Ahmad
- Department of Bioinformatics, Hazara University Mansehra, Mansehra, Pakistan
| | | | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, Maharashtra, India
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Etify A Bakhite
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Osama Younis
- Chemistry Department, Faculty of Science, the New Valley University, El-Kharja, Egypt
| | | | - Omaima F Ibrahim
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| | - Shaaban K Mohamed
- Chemistry and Environmental Division, Manchester Metropolitan University, Manchester, England
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt
| |
Collapse
|
11
|
Işık A, Acar Çevik U, Karayel A, Ahmad I, Patel H, Çelik İ, Gül Ü, Bayazıt G, Bostancı HE, Koçak A, Özkay Y, Kaplancıklı ZA. Synthesis, DFT Calculations, In Silico Studies, and Antimicrobial Evaluation of Benzimidazole-Thiadiazole Derivatives. ACS OMEGA 2024; 9:18469-18479. [PMID: 38680334 PMCID: PMC11044166 DOI: 10.1021/acsomega.4c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024]
Abstract
In this study, a series of new benzimidazole-thiadiazole hybrids were synthesized, and the synthesized compounds were screened for their antimicrobial activities against eight species of pathogenic bacteria and three fungal species. Azithromycin, voriconazole, and fluconazole were used as reference drugs in the mtt assay. Among them, compounds 5f and 5h showed potent antifungal activity against C. albicans with a MIC of 3.90 μg/mL. Further, the results of the antimicrobial assay for compounds 5a, 5b, 5f, and 5h proved to be potent against E. faecalis (ATCC 2942) on the basis of an acceptable MIC value of 3.90 μg/mL. The cytotoxic effects of compounds that are effective as a result of their antimicrobial activity on healthy mouse fibroblast cells (L929) were evaluated. According to HOMO-LUMO analysis, compound 5h (with the lower ΔE = 3.417 eV) is chemically more reactive than the other molecules, which is compatible with the highest antibacterial and antifungal activity results. A molecular docking study was performed to understand their binding modes within the sterol 14-α demethylase active site and to interpret their promising fungal inhibitory activities. Molecular dynamics (MD) simulations of the most potent compounds 5f and 5h were found to be quite stable in the active site of the 14-α demethylase (5TZ1) protein.
Collapse
Affiliation(s)
- Ayşen Işık
- Department
of Biochemistry, Faculty of Science, Selçuk
University, Konya, Turkey
| | - Ulviye Acar Çevik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Arzu Karayel
- Department
of Physics, Faculty of Arts and Science, Hitit University, Çorum 19030, Turkey
| | - Iqrar Ahmad
- Department
of Pharmaceutical Chemistry, Prof. Ravindra
Nikam College of Pharmacy, Gondur, Dhule, Maharashtra 424002, India
| | - Harun Patel
- Division
of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education
and Research, Shirpur, Maharashtra 425405, India
| | - İsmail Çelik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Ülküye
Dudu Gül
- Department
of Bioengineering, Faculty of Engineering, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Gizem Bayazıt
- Department
of Biotechnology, Institute of Graduate Studies, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Hayrani Eren Bostancı
- Department
of Biochemistry, Faculty of Pharmacy, Cumhuriyet
University, Sivas, Turkey
| | - Ahmet Koçak
- Department
of Chemistry, Faculty of Science, Selçuk
University, Konya, Turkey
| | - Yusuf Özkay
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Zafer Asım Kaplancıklı
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| |
Collapse
|
12
|
Ahmad Ansari I, Debnath B, Kar S, Patel HM, Debnath S, Zaki MEA, Pal P. Identification of potential edible spices as EGFR and EGFR mutant T790M/L858R inhibitors by structure-based virtual screening and molecular dynamics. J Biomol Struct Dyn 2024; 42:2464-2481. [PMID: 37349948 DOI: 10.1080/07391102.2023.2223661] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/14/2023] [Indexed: 06/24/2023]
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinases are overexpressed in several human cancers and could serve as a promising anti-cancer drug target. With this in view, the main aim of the present study was to identify spices having the potential to inhibit EGFR tyrosine kinase. The structure-based virtual screening of spice database consisting of 1439 compounds with EGFR tyrosine kinase (PDB ID: 3W32) was carried out using Glide. Top scored 18 hits (XP Glide Score ≥ -10.0 kcal/mol) was further docked with three EGFR tyrosine kinases and three EGFR T790M/L858R mutants using AutodockVina, followed by ADME filtration. The best three hits were further refined by Molecular Dynamics (MD) simulation and MM-GBSA-based binding energy calculation. The overall docking results of the selected hits with both EGFR and EGFR T790M/L858R were quite satisfactory and showed strong binding compared to the three coligands. Detailed MD analysis of CL_07, AC_11 and AS_49 also showed the stability of the protein-ligand complexes. Moreover, the hits were drug-like, and MM-GBSA binding free energy of CL_07 and AS_49 was established to be far better. AC_11 was found to be similar to the known inhibitor Gefitinib. Most of the potential hits are available in Allium cepa, CL_07 and AS_49 available in Curcuma longa and Allium sativum, respectively. Therefore, these three spices could be used as a potential therapeutic candidate against cancer caused by overexpression of EGFR after validation of the observations of this study in in-vitro experiments. Further extensive work is needed to improve the scaffolds CL_07, AC_11, AC_17, and AS_49 as potential anti-cancer drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Iqrar Ahmad Ansari
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, Maharashtra, India
- Division of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur (Dhule), Maharashtra, India
| | - Bimal Debnath
- Department of Forestry and Biodiversity, Tripura University, Suryamaninagar, Tripura, India
| | - Saikat Kar
- Department of Obstetrics and Gynecology, Agartala Govt. Medical College, Tripura, India
| | - Harun M Patel
- Division of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur (Dhule), Maharashtra, India
| | - Sudhan Debnath
- Department of Chemistry, Netaji Subhas Mahavidyalaya, Udaipur, Tripura, India
| | - Magdi E A Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University, Faculty of Science, Riyadh, Saudi Arabia
| | - Pinaki Pal
- Department of Physics, RamkrishnaMahavidyalay, Unokoti, Tripura, India
| |
Collapse
|
13
|
Noumi E, Ahmad I, Adnan M, Merghni A, Patel H, Haddaji N, Bouali N, Alabbosh KF, Ghannay S, Aouadi K, Kadri A, Polito F, Snoussi M, De Feo V. GC/MS Profiling, Antibacterial, Anti-Quorum Sensing, and Antibiofilm Properties of Anethum graveolens L. Essential Oil: Molecular Docking Study and In-Silico ADME Profiling. PLANTS (BASEL, SWITZERLAND) 2023; 12:1997. [PMID: 37653914 PMCID: PMC10220905 DOI: 10.3390/plants12101997] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Anethum graveolens L. has been known as an aromatic, medicinal, and culinary herb since ancient times. The main purpose of this study was to determine the chemical composition, antibacterial, antibiofilm, and anti-quorum sensing activities of the essential oil (EO) obtained by hydro-distillation of the aerial parts. Twelve components were identified, representing 92.55% of the analyzed essential oil. Limonene (48.05%), carvone (37.94%), cis-dihydrocarvone (3.5%), and trans-carvone (1.07%) were the main identified constituents. Results showed that the obtained EO was effective against eight bacterial strains at different degrees. Concerning the antibiofilm activity, limonene was more effective against biofilm formation than the essential oil when tested using sub-inhibitory concentrations. The results of anti-swarming activity tested against P. aeruginosa PAO1 revealed that A. graveolens induced more potent inhibitory effects in the swarming behavior of the PAO1 strain when compared to limonene, with a percentage reaching 33.33% at a concentration of 100 µg/mL. The ADME profiling of the identified phytocompounds confirms their important pharmacokinetic and drug-like properties. The in-silico study using molecular docking approaches reveals a high binding score between the identified compounds and known target enzymes involved in antibacterial and anti-quorum sensing (QS) activities. Overall, the obtained results highlight the possible use of A. graveolens EO to prevent food contamination with foodborne pathogenic bacteria.
Collapse
Affiliation(s)
- Emira Noumi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, Monastir 5000, Tunisia
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, Maharashtra, India;
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.)
| | - Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia;
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India;
| | - Najla Haddaji
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.)
| | - Nouha Bouali
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.)
| | - Khulood Fahad Alabbosh
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.)
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, P.O. Box 6688, Buraidah 51452, Saudi Arabia; (S.G.)
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, P.O. Box 6688, Buraidah 51452, Saudi Arabia; (S.G.)
| | - Adel Kadri
- College of Science and Arts in Baljurashi, Al Baha University, P.O. Box 1988, Albaha 65527, Saudi Arabia
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Sciences of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, Monastir 5000, Tunisia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy
| |
Collapse
|
14
|
Li SR, Tan YM, Zhang L, Zhou CH. Comprehensive Insights into Medicinal Research on Imidazole-Based Supramolecular Complexes. Pharmaceutics 2023; 15:1348. [PMID: 37242590 PMCID: PMC10222694 DOI: 10.3390/pharmaceutics15051348] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The electron-rich five-membered aromatic aza-heterocyclic imidazole, which contains two nitrogen atoms, is an important functional fragment widely present in a large number of biomolecules and medicinal drugs; its unique structure is beneficial to easily bind with various inorganic or organic ions and molecules through noncovalent interactions to form a variety of supramolecular complexes with broad medicinal potential, which is being paid an increasing amount of attention regarding more and more contributions to imidazole-based supramolecular complexes for possible medicinal application. This work gives systematical and comprehensive insights into medicinal research on imidazole-based supramolecular complexes, including anticancer, antibacterial, antifungal, antiparasitic, antidiabetic, antihypertensive, and anti-inflammatory aspects as well as ion receptors, imaging agents, and pathologic probes. The new trend of the foreseeable research in the near future toward imidazole-based supramolecular medicinal chemistry is also prospected. It is hoped that this work provides beneficial help for the rational design of imidazole-based drug molecules and supramolecular medicinal agents and more effective diagnostic agents and pathological probes.
Collapse
Affiliation(s)
- Shu-Rui Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yi-Min Tan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ling Zhang
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
15
|
Zala AR, Naik HN, Ahmad I, Patel H, Jauhari S, Kumari P. Design and synthesis of novel 1,2,3-triazole linked hybrids: Molecular docking, MD simulation, and their antidiabetic efficacy as α-Amylase inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|