1
|
de O. Viana J, Weber KC, da Cruz LEG, Santos RDO, Rocha GB, Jordão AK, Barbosa EG. In Silico Structural Insights and Potential Inhibitor Identification Based on the Benzothiazole Core for Targeting Leishmania major Pteridine Reductase 1. ACS OMEGA 2025; 10:306-317. [PMID: 39829523 PMCID: PMC11740253 DOI: 10.1021/acsomega.4c06146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025]
Abstract
Leishmaniasis is reported as the second most common protozoonosis, with the highest prevalence and mortality rate. Among the Leishmania drug targets, Pteridine Reductase 1 of Leishmania major (LmPTR1) proved to be promising because Leishmania is auxotrophic for folates. Thus, this study employed a combination of ligand- and structure-based approaches to screen new benzothiazole compounds as LmPTR1 inhibitor candidates. Initially, a highly predictive quantitative structure-activity relationship (QSAR) model was able to identify the relevant hybrid descriptors, with an accuracy of over 93%. Insights into the mechanism of action indicated Phe113, His241, Leu188, Met183, and Leu226 as key residues. New commercially available compounds were screened using QSAR, docking, and pharmacokinetic properties as filters. Molecular dynamics, non-covalent interactions analysis, and quantum chemical calculation of binding enthalpy demonstrated that the lead compound (ZINC 72229720) forms a stable complex with LmPTR1, indicating it as a new promising LmPTR1 inhibitor.
Collapse
Affiliation(s)
- Jéssika de O. Viana
- Department
of Chemistry, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Karen C. Weber
- Department
of Chemistry, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Luiz E. G. da Cruz
- Department
of Chemistry, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Rhayane de O. Santos
- Department
of Chemistry, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Gerd B. Rocha
- Department
of Chemistry, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Alessandro K. Jordão
- Department
of Pharmacy, Federal University of Rio Grande
do Norte, General Cordeiro de Farias Street, CEP, 59012-570 Natal, RN, Brazil
| | - Euzébio G. Barbosa
- Department
of Pharmacy, Federal University of Rio Grande
do Norte, General Cordeiro de Farias Street, CEP, 59012-570 Natal, RN, Brazil
| |
Collapse
|
2
|
Bharadava K, Upadhyay TK, Kaushal RS, Ahmad I, Alraey Y, Siddiqui S, Saeed M. Genomic Insight of Leishmania Parasite: In-Depth Review of Drug Resistance Mechanisms and Genetic Mutations. ACS OMEGA 2024; 9:12500-12514. [PMID: 38524425 PMCID: PMC10955595 DOI: 10.1021/acsomega.3c09400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Leishmaniasis, which is caused by a parasitic protozoan of the genus Leishmania, is still a major threat to global health, impacting millions of individuals worldwide in endemic areas. Chemotherapy has been the principal method for managing leishmaniasis; nevertheless, the evolution of drug resistance offers a significant obstacle to therapeutic success. Drug-resistant behavior in these parasites is a complex phenomenon including both innate and acquired mechanisms. Resistance is frequently related to changes in drug transportation, drug target alterations, and enhanced efflux of the drug from the pathogen. This review has revealed specific genetic mutations in Leishmania parasites that are associated with resistance to commonly used antileishmanial drugs such as pentavalent antimonials, miltefosine, amphotericin B, and paromomycin, resulting in changes in gene expression along with the functioning of various proteins involved in drug uptake, metabolism, and efflux. Understanding the genetic changes linked to drug resistance in Leishmania parasites is essential for creating approaches for tackling and avoiding the spread of drug-resistant variants. Based on which specific treatments focus on mutations and pathways could potentially improve treatment efficacy and help long-term leishmaniasis control. More study is needed to uncover the complete range of genetic changes generating medication resistance and to develop new therapies based on available information.
Collapse
Affiliation(s)
- Krupanshi Bharadava
- Biophysics
& Structural Biology, Research & Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Tarun Kumar Upadhyay
- Department
of Life Sciences, Parul Institute of Applied Sciences & Research
and Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Radhey Shyam Kaushal
- Biophysics
& Structural Biology, Research & Development Cell, Parul University, Vadodara, Gujarat 391760, India
- Department
of Life Sciences, Parul Institute of Applied Sciences & Research
and Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Irfan Ahmad
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Yasser Alraey
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Samra Siddiqui
- Department
of Health Service Management, College of Public Health and Health
Informatics, University of Hail, Hail 55476, Saudi Arabia
| | - Mohd Saeed
- Department
of Biology, College of Science, University
of Hail, Hail 55476, Saudi Arabia
| |
Collapse
|
3
|
Abbotto E, Casini B, Piacente F, Scarano N, Cerri E, Tonelli M, Astigiano C, Millo E, Sturla L, Bruzzone S, Cichero E. Novel Thiazole-Based SIRT2 Inhibitors Discovered via Molecular Modelling Studies and Enzymatic Assays. Pharmaceuticals (Basel) 2023; 16:1316. [PMID: 37765125 PMCID: PMC10535842 DOI: 10.3390/ph16091316] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Recently, the development of sirtuin small molecule inhibitors (SIRTIs) has been gaining attention for the treatment of different cancer types, but also to contrast neurodegenerative disease, diabetes, and autoimmune syndromes. In the search for SIRT2 modulators, the availability of several X-crystallographic data regarding SIRT2-ligand complexes has allowed for setting up a structure-based study, which is herein presented. A set of 116 SIRT2 inhibitors featuring different chemical structures has been collected from the literature and used for molecular docking studies involving 4RMG and 5MAT PDB codes. The information found highlights key contacts with the SIRT2 binding pocket such as Van der Waals and π-π stacking with Tyr104, Phe119, Phe234, and Phe235 in order to achieve high inhibitory ability values. Following the preliminary virtual screening studies, a small in-house library of compounds (1a-7a), previously investigated as putative HSP70 inhibitors, was described to guide the search for dual-acting HSP70/SIRT2 inhibitors. Biological and enzymatic assays validated the whole procedure. Compounds 2a and 7a were found to be the most promising derivatives herein proposed.
Collapse
Affiliation(s)
- Elena Abbotto
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.A.); (F.P.); (E.C.); (C.A.); (E.M.); (L.S.)
| | - Beatrice Casini
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (B.C.); (N.S.); (M.T.)
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.A.); (F.P.); (E.C.); (C.A.); (E.M.); (L.S.)
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (B.C.); (N.S.); (M.T.)
| | - Elena Cerri
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.A.); (F.P.); (E.C.); (C.A.); (E.M.); (L.S.)
| | - Michele Tonelli
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (B.C.); (N.S.); (M.T.)
| | - Cecilia Astigiano
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.A.); (F.P.); (E.C.); (C.A.); (E.M.); (L.S.)
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.A.); (F.P.); (E.C.); (C.A.); (E.M.); (L.S.)
| | - Laura Sturla
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.A.); (F.P.); (E.C.); (C.A.); (E.M.); (L.S.)
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.A.); (F.P.); (E.C.); (C.A.); (E.M.); (L.S.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (B.C.); (N.S.); (M.T.)
| |
Collapse
|