1
|
Zhang H, Lu C, Yao Q, Jiao Q. In silico study to identify novel NEK7 inhibitors from natural sources by a combination strategy. Mol Divers 2025; 29:139-162. [PMID: 38598164 DOI: 10.1007/s11030-024-10838-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Cancer poses a significant global health challenge and significantly contributes to mortality. NEK7, related to the NIMA protein kinase family, plays a crucial role in spindle assembly and cell division. The dysregulation of NEK7 is closely linked to the onset and progression of various cancers, especially colon and breast cancer, making it a promising target for cancer therapy. Nevertheless, the shortage of high-quality NEK7 inhibitors highlights the need for new therapeutic strategies. In this study, we utilized a multidisciplinary approach, including virtual screening, molecular docking, pharmacokinetics, molecular dynamics simulations (MDs), and MM/PBSA calculations, to evaluate natural compounds as NEK7 inhibitors comprehensively. Through various docking strategies, we identified three natural compounds: (-)-balanol, digallic acid, and scutellarin. Molecular docking revealed significant interactions at residues such as GLU112 and ALA114, with docking scores of -15.054, -13.059, and -11.547 kcal/mol, respectively, highlighting their potential as NEK7 inhibitors. MDs confirmed the stability of these compounds at the NEK7-binding site. Hydrogen bond analysis during simulations revealed consistent interactions, supporting their strong binding capacity. MM/PBSA analysis identified other crucial amino acids contributing to binding affinity, including ILE20, VAL28, ILE75, LEU93, ALA94, LYS143, PHE148, LEU160, and THR161, crucial for stabilizing the complex. This research demonstrated that these compounds exceeded dabrafenib in binding energy, according to MM/PBSA calculations, underscoring their effectiveness as NEK7 inhibitors. ADME/T predictions showed lower oral toxicity for these compounds, suggesting their potential for further development. This study highlights the promise of these natural compounds as bases for creating more potent derivatives with significant biological activities, paving the way for future experimental validation.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Chenhong Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Qilong Yao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Qingcai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
2
|
Zaki K, Ouabane M, Guendouzi A, Sbai A, Sekkate C, Bouachrine M, Lakhlifi T. From farm to pharma: Investigation of the therapeutic potential of the dietary plants Apium graveolens L., Coriandrum sativum, and Mentha longifolia, as AhR modulators for Immunotherapy. Comput Biol Med 2024; 181:109051. [PMID: 39186905 DOI: 10.1016/j.compbiomed.2024.109051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Autoimmune diseases represent a complex array of conditions where the body's immune system mistakenly attacks its own tissues. These disorders, affecting millions worldwide, encompass a broad spectrum of conditions ranging from rheumatoid arthritis and multiple sclerosis to lupus and type 1 diabetes. The Aryl hydrocarbon receptor (AhR) translocator, expressed across immune and other cell types, plays crucial roles in immune disorders and inflammatory diseases. With a realm towards natural remedies in modern medicine for disease prevention, this study investigates the electronic properties and behaviors of bioactive compounds from dietary sources, including Apium graveolens L. (Celery), Coriandrum sativum seeds (Coriander), and Mentha longifolia, as AhR modulators. Through comprehensive analysis (HOMO-LUMO, ESP, LOL, and ELF), electron-rich and -poor regions, electron localization, and delocalization are identified, contrasting these compounds with the toxic AhR ligand, TCDD. Evaluation of Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties reveals favorable pharmacokinetics without blood-brain barrier penetration, indicating drug-like characteristics. Molecular docking demonstrates stronger interactions of dietary flavonoid ligands with AhR transcription compared to TCDD. Molecular dynamics simulations confirm the stability of complexes and the sustainability of interactions formed. This research underscores the potential of natural compounds as effective AhR modulators for therapeutic interventions in immune-related disorders.
Collapse
Affiliation(s)
- Khadija Zaki
- Molecular Chemistry and Natural Substances Laboratory, Moulay Ismail University, Faculty of Science, Meknes, Morocco
| | - Mohamed Ouabane
- Molecular Chemistry and Natural Substances Laboratory, Moulay Ismail University, Faculty of Science, Meknes, Morocco; Chemistry-Biology Applied to the Environment URL CNRT 13, Department of Chemistry, Faculty of Science, My Ismail University, Meknes, Morocco
| | - Abdelkrim Guendouzi
- Laboratory of Chemistry, Synthesis, Properties and Applications, Department of Chemistry, Faculty of Science, University of Saida, Algeria
| | - Abdelouahid Sbai
- Molecular Chemistry and Natural Substances Laboratory, Moulay Ismail University, Faculty of Science, Meknes, Morocco.
| | - Chakib Sekkate
- Chemistry-Biology Applied to the Environment URL CNRT 13, Department of Chemistry, Faculty of Science, My Ismail University, Meknes, Morocco
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Moulay Ismail University, Faculty of Science, Meknes, Morocco
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Moulay Ismail University, Faculty of Science, Meknes, Morocco
| |
Collapse
|
3
|
Ouabane M, Zaki K, Zaki H, Guendouzi A, Sbai A, Sekkate C, Lakhlifi T, Bouachrine M. Inhibition of the Janus kinase protein (JAK1) by the A. Pyrethrum Root Extract for the treatment of Vitiligo pathology. Design, Molecular Docking, ADME-Tox, MD Simulation, and in-silico investigation. Comput Biol Med 2024; 179:108816. [PMID: 38955123 DOI: 10.1016/j.compbiomed.2024.108816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
This study delves into the therapeutic efficacy of A. pyrethrum in addressing vitiligo, a chronic inflammatory disorder known for inducing psychological distress and elevating susceptibility to autoimmune diseases. Notably, JAK inhibitors have emerged as promising candidates for treating immune dermatoses, including vitiligo. Our investigation primarily focuses on the anti-vitiligo potential of A. pyrethrum root extract, specifically targeting N-alkyl-amides, utilizing computational methodologies. Density Functional Theory (DFT) is deployed to meticulously scrutinize molecular properties, while comprehensive evaluations of ADME-Tox properties for each molecule contribute to a nuanced understanding of their therapeutic viability, showcasing remarkable drug-like characteristics. Molecular docking analysis probes ligand interactions with pivotal site JAK1, with all compounds demonstrating significant interactions; notably, molecule 6 exhibits the most interactions with crucial inhibition residues. Molecular dynamics simulations over 500ns further validate the importance and sustainability of these interactions observed in molecular docking, favoring energetically both molecules 6 and 1; however, in terms of stability, the complex with molecule 6 outperforms others. DFT analyses elucidate the distribution of electron-rich oxygen atoms and electron-poor regions within heteroatoms-linked hydrogens. Remarkably, N-alkyl-amides extracted from A. pyrethrum roots exhibit similar compositions, yielding comparable DFT and Electrostatic Potential (ESP) results with subtle distinctions. These findings underscore the considerable potential of A. pyrethrum root extracts as a natural remedy for vitiligo.
Collapse
Affiliation(s)
- Mohamed Ouabane
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco; Chemistry-Biology Applied to the Environment URL CNRT 13, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco
| | - Khadija Zaki
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco
| | - Hanane Zaki
- Biotechnology, Bioresources, And Bioinformatics Laboratory at the Higher School of Technology, 54000, Khenifra, Morocco
| | - Abdelkrim Guendouzi
- Laboratory of Chemistry, Synthesis, Properties and Applications, Department of Chemistry, Faculty of Science, University of Saida, Algeria
| | - Abdelouahid Sbai
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco
| | - Chakib Sekkate
- Chemistry-Biology Applied to the Environment URL CNRT 13, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco.
| |
Collapse
|