1
|
Rabaan AA, Al Kaabi NA, Muzaheed, Alfaresi M, Garout M, Alotaibi N, Alwashmi ASS, Alsayyah A, Alali NA, Sulaiman T, Alotaibi J, Alissa M. Antiviral actions of natural compounds against dengue virus RNA dependent RNA polymerase: insights from molecular dynamics and Gibbs free energy landscape. J Biomol Struct Dyn 2024:1-18. [PMID: 38441606 DOI: 10.1080/07391102.2024.2325120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/24/2024] [Indexed: 03/25/2025]
Abstract
Dengue fever, a major global health challenge, affects nearly half the world's population and lacks effective treatments or vaccines. Addressing this, our study focused on natural compounds that potentially inhibit the dengue virus's RNA-dependent RNA polymerase (RdRp), a crucial target in the viral replication cycle. Utilizing the MTiOpenScreen webserver, we screened 1226 natural compounds from the NP-lib database. This screening identified four promising compounds ZINC000059779788, ZINC0000044404209, ZINC0000253504517 and ZINC0000253499146), each demonstrating high negative binding energies between -10.4 and -9.9 kcal/mol, indicative of strong potential as RdRp inhibitors. These compounds underwent rigorous validation through re-docking and a detailed 100 ns molecular dynamics (MD) simulation. This analysis affirmed the dynamic stability of the protein-ligand complexes, a critical factor in the effectiveness of potential drug candidates. Additionally, we conducted essential dynamics and free energy landscape calculations to understand the structural transitions in the RdRp protein upon ligand binding, providing valuable insights into the mechanism of inhibition. Our findings present these natural molecules as promising therapeutic agents against the dengue virus. By targeting the allosteric site of RdRp, these compounds offer a novel approach to hinder the viral replication process. This research significantly contributes to the search for effective anti-dengue treatments, positioning natural compounds as potential key players in dengue virus control strategies.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Nawal A Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi, United Arab Emirates
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, United Arab Emirates
| | - Muzaheed
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mubarak Alfaresi
- Department of Microbiology, National Reference Laboratory, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nouf Alotaibi
- Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmed Alsayyah
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Neda A Alali
- Pediatric Department, Security Force Hospital, Riyadh, Saudi Arabia
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Jawaher Alotaibi
- Infectious Diseases Unit, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
2
|
Sharma P, Moustafa M, Al-Shehri M, Alotaibi F, Bhardwaj R, Singh IK. A simulation-based approach to target Zika virus RNA-dependent RNA polymerase with marine compounds for antiviral development. J Biomol Struct Dyn 2024:1-11. [PMID: 38415996 DOI: 10.1080/07391102.2024.2322620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
Despite significant efforts, currently, there is no particular drug available to treat Zika virus (ZIKV) infection, highlighting the urgent need for effective therapeutic interventions. To identify putative inhibitors of the ZIKV RdRp protein's RNA binding function, the present study applied an extensive in-silico drug discovery methodology. The initial phase involved virtual screening using Lipinski's rule of five as a filter, ensuring the selection of molecules with favorable pharmacokinetic properties. This process yielded 238 compounds with promising docking scores, ranging from -6.0 to -7.48 kcal/mol, indicative of their potential binding affinity to the ZIKV RdRp. To refine the selection, these compounds underwent a re-docking process, comparing their binding energies with a reference molecule known for its inhibitory action against RdRp. Remarkably, five compounds, labeled CMNPD30598, CMNPD27464, CMNPD25971, CMNPD27444, and CMNPD16599, demonstrated superior re-docking energies compared to the reference, suggesting a stronger interaction with the RdRp allosteric site. Subsequent molecular dynamics (MD) simulations provided insights into the stability of these complexes over time, reinforcing their potential as RdRp inhibitors. Additionally, the calculation of free binding energies and principal component analysis (PCA) of the free energy landscape offered a deeper understanding of the binding dynamics and energetics. This study not only highlights the utility of marine fungi compounds in antiviral drug discovery but also showcases the power of computational tools in identifying novel therapeutics. The identified compounds represent promising candidates for further experimental validation and development as ZIKV RdRp inhibitors.
Collapse
Affiliation(s)
- Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Al-Shehri
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Faisal Alotaibi
- Department of Pharmacy Practice, College of Pharmacy, Shaqra University, Shaqraa, Saudi Arabia
| | - Rima Bhardwaj
- Department of Chemistry, Poona College, Savitribai Phule Pune University, Pune, India
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| |
Collapse
|