1
|
Samorì E, Rodríguez I, Oliver JA, Sánchez-Vázquez FJ, López-Olmeda JF. Influence of feeding time on daily rhythms of locomotor activity, clock genes, and epigenetic mechanisms in the liver and hypothalamus of the European sea bass (Dicentrarchus labrax). FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:50. [PMID: 39945981 PMCID: PMC11825647 DOI: 10.1007/s10695-025-01461-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 01/26/2025] [Indexed: 02/16/2025]
Abstract
The circadian system plays a crucial role in most physiological processes. The molecular clock is linked to epigenetic mechanisms, both of which are influenced by nutrient status and, consequently, to feeding. This research investigated how feeding times (mid-light, ML, vs. mid-dark, MD) synchronize daily rhythms of behavior, clock genes, and epigenetic mechanisms in the European sea bass (Dicentrarchus labrax), focusing on hypothalamus and liver to assess the impact on central and peripheral pacemakers. Feeding at MD influenced the molecular clock of the hypothalamus, causing shifts in acrophases (peaks) for genes of the negative loop (per1b, per2, cry1a). In the liver, the ML fed group showed rhythmic expression for all clock genes, whereas only per2 maintained the rhythms in the MD group. Epigenetic genes related to methylation (dnmt1, dnmt3a) and demethylation (tet2, gadd45aa, mbd4) in the liver displayed rhythmic expression in the ML group, but only dnmt3a maintained the rhythm in the MD group. Nutrient-related factors (SAM and SAH) showed differences between day and night, suggesting a different utilization based on feeding times. Finally, sirt1, a gene involved in deacetylation, displayed a clear daily rhythm in the ML group. All epigenetic genes peaked during the night (resting phase). Overall, these findings indicated feeding time serves as a potent zeitgeber, synchronizing circadian clock and epigenetic rhythms in the liver, with peaks during the resting phase, suggesting this phase represents the adequate time for epigenetic modifications.
Collapse
Affiliation(s)
- Elisa Samorì
- Department of Physiology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Inmaculada Rodríguez
- Department of Physiology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - José Antonio Oliver
- Department of Physiology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | | | | |
Collapse
|
2
|
Wu C, Mao G, Ji X, Chen Y, Geng X, Okeke ES, Ding Y, Yang L, Wu X, Feng W. Neurodevelopmental toxicity and mechanism of action of monoethylhexyl phthalate (MEHP) in the developing zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107230. [PMID: 39752782 DOI: 10.1016/j.aquatox.2024.107230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 02/11/2025]
Abstract
Monoethylhexyl phthalate (MEHP) is the primary metabolite of di(2-ethylhexyl) phthalate (DEHP), the most prevalent phthalate plasticiser globally. It has been demonstrated that MEHP exerts more potent toxic effects than DEHP. Nevertheless, the full extent of the toxicity of MEHP to neurodevelopmental organisms remains unclear. Accordingly, the present study was designed to investigate the neurodevelopmental toxicity of MEHP exposure and the underlying molecular mechanisms. Zebrafish juveniles were exposed to different concentrations of MEHP (7.42, 14.84, 29.68 and 74.2 μg/L) for a period of four weeks. Immunohistological evidence indicated that MEHP exposure resulted in oxidative stress and apoptosis in the developing zebrafish brain. Subsequently, the neurobehaviour of zebrafish larvae was evaluated, and it was determined that MEHP significantly disrupted their locomotor capacity, motor vigor, and social conduct. Furthermore, HE staining revealed damage to brain neurons, which may be linked to impaired synthesis and conduction of inter-synaptic neurotransmitters. Transcriptomic analyses indicated that MEHP may affect the expression levels of genes in the P53 signalling pathway and signalling pathways related to the development of the nervous system. This results in impaired functions, including nerve conduction and neuronal development. Additionally, it induces oxidative stress, which leads to significant brain cell apoptosis and, ultimately, neurotoxicity in developing zebrafish.
Collapse
Affiliation(s)
- Chaoqiong Wu
- School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Guanghua Mao
- School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Xiang Ji
- School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Yao Chen
- School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Xin Geng
- School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Emmanuel Sunday Okeke
- School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Yangyang Ding
- the Laboratory Animal Research Center, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Xiangyang Wu
- School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Weiwei Feng
- School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
3
|
Risha KS, Rasal KD, Reang D, Iquebal MA, Sonwane A, Brahmane M, Chaudhari A, Nagpure N. DNA Methylation Profiling in Genetically Selected Clarias magur (Hamilton, 1822) Provides Insights into the Epigenetic Regulation of Growth and Development. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:776-789. [PMID: 39037491 DOI: 10.1007/s10126-024-10346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
DNA methylation is an epigenetic alteration that impacts gene expression without changing the DNA sequence affecting an organism's phenotype. This study utilized a reduced representation bisulfite sequencing (RRBS) approach to investigate the patterns of DNA methylation in genetically selected Clarias magur stocks. RRBS generated 249.22 million reads, with an average of 490,120 methylation sites detected in various parts of genes, including exons, introns, and intergenic regions. A total of 896 differentially methylated regions (DMRs) were identified; 356 and 540 were detected as hyper-methylated and hypo-methylated regions, respectively. The DMRs and their association with overlapping genes were explored using whole genome data of magur, which revealed 205 genes in exonic, 210 in intronic, and 480 in intergenic regions. The analysis identified the maximum number of genes enriched in biological processes such as RNA biosynthetic process, response to growth factors, nervous system development, neurogenesis, and anatomical structure morphogenesis. Differentially methylated genes (DMGs) such as myrip, mylk3, mafb, egr3, ndnf, meis2a, foxn3, bmp1a, plxna3, fgf6, sipa1l1, mcu, cnot8, trim55b, and myof were associated with growth and development. The selected DMGs were analyzed using real-time PCR, which showed altered mRNA expression levels. This work offers insights into the epigenetic mechanisms governing growth performance regulation in magur stocks. This work provides a valuable resource of epigenetic data that could be integrated into breeding programs to select high-performing individuals.
Collapse
Affiliation(s)
- K Shasti Risha
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Kiran D Rasal
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India.
| | - Dhalongsaih Reang
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Arvind Sonwane
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Manoj Brahmane
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Aparna Chaudhari
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Naresh Nagpure
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| |
Collapse
|
4
|
Tinarelli F, Ivanova E, Colombi I, Barini E, Balzani E, Garcia CG, Gasparini L, Chiappalone M, Kelsey G, Tucci V. Cell-cell coupling and DNA methylation abnormal phenotypes in the after-hours mice. Epigenetics Chromatin 2021; 14:1. [PMID: 33407878 PMCID: PMC7789812 DOI: 10.1186/s13072-020-00373-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/13/2020] [Indexed: 11/10/2022] Open
Abstract
Background DNA methylation has emerged as an important epigenetic regulator of brain processes, including circadian rhythms. However, how DNA methylation intervenes between environmental signals, such as light entrainment, and the transcriptional and translational molecular mechanisms of the cellular clock is currently unknown. Here, we studied the after-hours mice, which have a point mutation in the Fbxl3 gene and a lengthened circadian period. Methods In this study, we used a combination of in vivo, ex vivo and in vitro approaches. We measured retinal responses in Afh animals and we have run reduced representation bisulphite sequencing (RRBS), pyrosequencing and gene expression analysis in a variety of brain tissues ex vivo. In vitro, we used primary neuronal cultures combined to micro electrode array (MEA) technology and gene expression. Results We observed functional impairments in mutant neuronal networks, and a reduction in the retinal responses to light-dependent stimuli. We detected abnormalities in the expression of photoreceptive melanopsin (OPN4). Furthermore, we identified alterations in the DNA methylation pathways throughout the retinohypothalamic tract terminals and links between the transcription factor Rev-Erbα and Fbxl3. Conclusions The results of this study, primarily represent a contribution towards an understanding of electrophysiological and molecular phenotypic responses to external stimuli in the Afh model. Moreover, as DNA methylation has recently emerged as a new regulator of neuronal networks with important consequences for circadian behaviour, we discuss the impact of the Afh mutation on the epigenetic landscape of circadian biology.
Collapse
Affiliation(s)
- Federico Tinarelli
- Genetics and Epigenetics of Behaviour (GEB) Laboratory, Istituto Italiano Di Tecnologia, via Morego, 30, 16163, Genova, Italy.,BioMed X Innovation Center, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany
| | - Elena Ivanova
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Ilaria Colombi
- Neuroscience and Brain Technologies, Istituto Italiano Di Tecnologia, via Morego, 30, 16163, Genova, Italy.,Brain Development and Disease, NBT, Istituto Italiano Di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Erica Barini
- Neurodevelopmental and Neurodegenerative Disease Laboratory, Istituto Italiano Di Tecnologia, via Morego, 30, 16163, Genova, Italy.,AbbVie Deutschland GmbH & Co, Knollstr, 67061, Ludwigshafen, Germany
| | - Edoardo Balzani
- Genetics and Epigenetics of Behaviour (GEB) Laboratory, Istituto Italiano Di Tecnologia, via Morego, 30, 16163, Genova, Italy.,Center for Neural Science, New York University, New York, NY, 10006, USA
| | - Celina Garcia Garcia
- Genetics and Epigenetics of Behaviour (GEB) Laboratory, Istituto Italiano Di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Laura Gasparini
- Neurodevelopmental and Neurodegenerative Disease Laboratory, Istituto Italiano Di Tecnologia, via Morego, 30, 16163, Genova, Italy.,AbbVie Deutschland GmbH & Co, Knollstr, 67061, Ludwigshafen, Germany
| | - Michela Chiappalone
- Neuroscience and Brain Technologies, Istituto Italiano Di Tecnologia, via Morego, 30, 16163, Genova, Italy.,Rehab Technologies, Istituto Italiano Di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Valter Tucci
- Genetics and Epigenetics of Behaviour (GEB) Laboratory, Istituto Italiano Di Tecnologia, via Morego, 30, 16163, Genova, Italy.
| |
Collapse
|
5
|
Cai M, Liu Z, Yu P, Jiao Y, Chen Q, Jiang Q, Zhao Y. Circadian rhythm regulation of the oxidation–antioxidant balance in Daphnia pulex. Comp Biochem Physiol B Biochem Mol Biol 2020; 240:110387. [DOI: 10.1016/j.cbpb.2019.110387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022]
|
6
|
Daily rhythms of expression in reproductive genes along the brain-pituitary-gonad axis and liver of zebrafish. Comp Biochem Physiol A Mol Integr Physiol 2019; 231:158-169. [DOI: 10.1016/j.cbpa.2019.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/19/2019] [Accepted: 02/16/2019] [Indexed: 12/26/2022]
|