1
|
Ruiter-Lopez L, Khan MAS, Wang X, Song BJ. Roles of Oxidative Stress and Autophagy in Alcohol-Mediated Brain Damage. Antioxidants (Basel) 2025; 14:302. [PMID: 40227291 PMCID: PMC11939343 DOI: 10.3390/antiox14030302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 04/15/2025] Open
Abstract
Excessive alcohol consumption significantly impacts human health, particularly the brain, due to its susceptibility to oxidative stress, which contributes to neurodegenerative conditions. Alcohol metabolism in the brain occurs primarily via catalase, followed by CYP2E1 pathways. Excess alcohol metabolized by CYP2E1 generates reactive oxygen/nitrogen species (ROS/RNS), leading to cell injury via altering many different pathways. Elevated oxidative stress impairs autophagic processes, increasing post-translational modifications and further exacerbating mitochondrial dysfunction and ER stress, leading to cell death. The literature highlights that alcohol-induced oxidative stress disrupts autophagy and mitophagy, contributing to neuronal damage. Key mechanisms include mitochondrial dysfunction, ER stress, epigenetics, and the accumulation of oxidatively modified proteins, which lead to neuroinflammation and impaired cellular quality control. These processes are exacerbated by chronic alcohol exposure, resulting in the suppression of protective pathways like NRF2-mediated antioxidant responses and increased susceptibility to neurodegenerative changes in the brain. Alcohol-mediated neurotoxicity involves complex interactions between alcohol metabolism, oxidative stress, and autophagy regulation, which are influenced by various factors such as drinking patterns, nutritional status, and genetic/environmental factors, highlighting the need for further molecular studies to unravel these mechanisms and develop targeted interventions.
Collapse
Affiliation(s)
- Leon Ruiter-Lopez
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Mohammed A. S. Khan
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.A.S.K.); (X.W.)
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.A.S.K.); (X.W.)
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Ma C, Li H, Lu S, Li X. The Role and Therapeutic Potential of Melatonin in Degenerative Fundus Diseases: Diabetes Retinopathy and Age-Related Macular Degeneration. Drug Des Devel Ther 2024; 18:2329-2346. [PMID: 38911030 PMCID: PMC11193467 DOI: 10.2147/dddt.s471525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024] Open
Abstract
Degenerative fundus disease encompasses a spectrum of ocular diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), which are major contributors to visual impairment and blindness worldwide. The development and implementation of effective strategies for managing and preventing the onset and progression of these diseases are crucial for preserving patients' visual acuity. Melatonin, a neurohormone primarily produced by the pineal gland, exhibits properties such as circadian rhythm modulation, antioxidant activity, anti-inflammatory effects, and neuroprotection within the ocular environment. Furthermore, melatonin has been shown to suppress neovascularization and reduce vascular leakage, both of which are critical in the pathogenesis of degenerative fundus lesions. Consequently, melatonin emerges as a promising therapeutic candidate for degenerative ocular diseases. This review provides a comprehensive overview of melatonin synthesis, its localization within ocular tissues, and its mechanisms of action, particularly in regulating melatonin production, thereby underscoring its potential as a therapeutic agent for degenerative fundus diseases.
Collapse
Affiliation(s)
- Chao Ma
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Haoyu Li
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, Hunan, People’s Republic of China
| | - Shuwen Lu
- Department of Ophthalmology, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
| | - Xian Li
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
3
|
LeFort KR, Rungratanawanich W, Song BJ. Melatonin Prevents Alcohol- and Metabolic Dysfunction- Associated Steatotic Liver Disease by Mitigating Gut Dysbiosis, Intestinal Barrier Dysfunction, and Endotoxemia. Antioxidants (Basel) 2023; 13:43. [PMID: 38247468 PMCID: PMC10812487 DOI: 10.3390/antiox13010043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Melatonin (MT) has often been used to support good sleep quality, especially during the COVID-19 pandemic, as many have suffered from stress-related disrupted sleep patterns. It is less known that MT is an antioxidant, anti-inflammatory compound, and modulator of gut barrier dysfunction, which plays a significant role in many disease states. Furthermore, MT is produced at 400-500 times greater concentrations in intestinal enterochromaffin cells, supporting the role of MT in maintaining the functions of the intestines and gut-organ axes. Given this information, the focus of this article is to review the functions of MT and the molecular mechanisms by which it prevents alcohol-associated liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), including its metabolism and interactions with mitochondria to exert its antioxidant and anti-inflammatory activities in the gut-liver axis. We detail various mechanisms by which MT acts as an antioxidant, anti-inflammatory compound, and modulator of intestinal barrier function to prevent the progression of ALD and MASLD via the gut-liver axis, with a focus on how these conditions are modeled in animal studies. Using the mechanisms of MT prevention and animal studies described, we suggest behavioral modifications and several exogenous sources of MT, including food and supplements. Further clinical research should be performed to develop the field of MT in preventing the progression of liver diseases via the gut-liver axis, so we mention a few considerations regarding MT supplementation in the context of clinical trials in order to advance this field of research.
Collapse
Affiliation(s)
- Karli R. LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| | | | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| |
Collapse
|
4
|
Zhao K, Ni Z, Qin Y, Zhu R, Yu Z, Ma Y, Chen W, Sun Q, Wang Z, Liu Y, Zhao J, Peng W, Hu S, Shi J, Lu L, Sun H. Disrupted diurnal oscillations of the gut microbiota in patients with alcohol dependence. Front Cell Infect Microbiol 2023; 13:1127011. [PMID: 36875518 PMCID: PMC9983756 DOI: 10.3389/fcimb.2023.1127011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
Background Patients with alcohol dependence (AD) can exhibit gut dysbacteria. Dysbacteria may co-occur with disruptions of circadian rhythmicity of the gut flora, which can aggravate AD. Herein, this study aimed to investigate diurnal oscillations of the gut microbiota in AD patients. Methods Thirty-two patients with AD, based on the Diagnostic and Statistical Manual of Mental Disorders, 4th edition, and 20 healthy subjects were enrolled in this study. Demographic and clinical data were collected by self-report questionnaires. Fecal samples at 7:00 AM, 11:00 AM, 3:00 PM, and 7:00 PM were collected from each subject. 16S rDNA sequencing was conducted. Wilcoxon and Kruskal-Wallis tests were performed to characterize alterations and oscillations of the gut microbiota. Results We found that β-diversity of the gut microbiota in AD patients oscillated diurnally compared with healthy subjects (p = 0.01). Additionally, 0.66% of operational taxonomic units oscillated diurnally in AD patients versus 1.68% in healthy subjects. At different taxonomic levels, bacterial abundance oscillated diurnally in both groups, such as Pseudomonas and Prevotella pallens (all p < 0.05). β-diversity of the gut microbiota in AD patients with high daily alcohol consumption, high-level cravings, short AD durations, and mild withdrawal symptoms oscillated diurnally compared with other AD patients (all p < 0.05). Conclusion The gut microbiota in AD patients exhibits disruptions of diurnal oscillation, which may provide novel insights into mechanisms of AD and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Kangqing Zhao
- NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Zhaojun Ni
- NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ying Qin
- Addiction Medicine Department, The Second People’s Hospital of Guizhou Province, Guizhou, China
| | - Ran Zhu
- NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Zhoulong Yu
- NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yundong Ma
- NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Wenhao Chen
- NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Qiqing Sun
- NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Zhong Wang
- NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yanjing Liu
- Addiction Medicine Department, The Second People’s Hospital of Guizhou Province, Guizhou, China
| | - Jingwen Zhao
- Addiction Medicine Department, The Second People’s Hospital of Guizhou Province, Guizhou, China
| | - Wenjuan Peng
- Addiction Medicine Department, The Second People’s Hospital of Guizhou Province, Guizhou, China
| | - Sifan Hu
- NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing, China
| | - Lin Lu
- NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Hongqiang Sun
- NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- *Correspondence: Hongqiang Sun,
| |
Collapse
|
5
|
Kurhaluk N, Tkachenko H. Effects of melatonin and metformin in preventing lysosome-induced autophagy and oxidative stress in rat models of carcinogenesis and the impact of high-fat diet. Sci Rep 2022; 12:4998. [PMID: 35322049 PMCID: PMC8943031 DOI: 10.1038/s41598-022-08778-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Imbalanced glucose tolerance and insulin resistance remain important as high cancer risk factors. Metformin administration to diabetic patients may be associated with a reduced risk of malignancy. The combined effects of the hormone melatonin and metformin in oncology practice have shown positive results. The relevance of our study is to find out the role of specific biomarkers of lysosome destruction and oxidative stress data in carcinogenesis models. The present study was designed to investigate the comparative synergic effect of peroral antidiabetic metformin (MF) and pineal hormone melatonin (MEL) administered alone and in combination in two different rat’s models of mammary tumour proliferation in vivo (N-methyl-N-nitrosourea, NMU or 7,12-dimethylbenz[a]anthracene, DMBA). We have studied the processes of lysosomal destruction (alanyl aminopeptidase AAP, leucyl aminopeptidase LAP, acid phosphatase AcP, β-N-acetylglucosaminidase NAG, β-galactosidase β-GD and β-glucuronidase β-GR) caused by evaluated oxidative stress in three types of tissues (liver, heart, and spleen) in female Sprague–Dawley rats fed a high-fat diet (10% of total fat: 2.5% from lard and 7.5% from palm olein). Our results revealed an increase in the activity of the studied lysosomal enzymes and their expression in a tissue-specific manner depending on the type of chemical agent (NMU or DMBA). MANOVA tests in our study confirmed the influence of the three main factors, type of tissue, chemical impact, and chemopreventive agents, and the combinations of these factors on the lysosomal activity induced during the process of cancerogenesis. The development and induction of the carcinogenesis process in the different rat models with the high-fat diet impact were also accompanied by initiation of free-radical oxidation processes, which we studied at the initial (estimated by the level of diene conjugates) and final (TBARS products) stages of this process. The combined effects of MEL and MF for the two models of carcinogenesis at high-fat diet impact for AAP, LAP, and AcP showed a significant synergistic effect when they impact together when compared with the effects of one substance alone (either MEL or MF) in the breast cancer model experiments. Synergistic effects of limiting destructive processes of lysosomal functioning β-GD enzyme activity we obtained in experiments with MEL and MF chemoprevention for both models of carcinogenesis for three tissues. The statistical SS test allowed us to draw the following conclusions on the role of each lysosomal parameter analyzed as an integral model: NAG > AcP > β-GD > β-GR > AAP > LAP.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewski Str., 22b, 76-200, Słupsk, Poland.
| | - Halyna Tkachenko
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewski Str., 22b, 76-200, Słupsk, Poland
| |
Collapse
|
6
|
Adekeye AO, Fafure AA. Assessment of the cellular integrity and expression of melatonin receptor (MTNR1A) in the retina assaulted by ethanol and acetaminophen. Hum Exp Toxicol 2022; 41:9603271221149010. [PMID: 36572547 DOI: 10.1177/09603271221149010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ethanol exposures have been reported to disrupt the development of the retina and optic nerve which can be considered as part of underlying mechanisms of visual pathway impairments. This study aims to investigate the cellular integrity of the retina and the expression of melatonin receptor (MTNR1A) in the retina when assaulted chronically and simultaneously by ethanol and acetaminophen. Animals were randomly grouped into five groups. Control (normal saline), Alcohol group (25% alcohol in 2% sucrose solution), Acetaminophen group, (100 mg/kg BW for 14 days), Acetaminophen + Alcohol group (25% alcohol in 2% sucrose solution + 100 mg/kg BW of paracetamol). Withdrawal group (25% alcohol in 2% sucrose solution + 100 mg/kg BW of paracetamol). The body weight and rectal temperature of the animals were taking every 2 days and a post mortem study was conducted by quantitatively assessing the markers of oxidative stress. Melatonin level was quantified in the retina tissue and Immunohistochemistry was done via MTNR1A to study the expression of melatonin receptor type 1A in the retina. These results demonstrate that alcohol and acetaminophen significantly reduced the activity of retina rat melatonin (MTNR1A) levels, lowers the SOD and MDA activity. Expression of MTNR1A was reduced in the ganglionic cell layer of Alcohol and acetaminophen group as compared to the control and withdrawal group. It can be inferred that chronic simultaneous intake/consumption of alcohol and acetaminophen altered the melatonin level in the retina and this may implicate the circadian clock and melatonin in Wistar rat visual system.
Collapse
Affiliation(s)
- A O Adekeye
- Department of Anatomy, College of Medicine and Health Sciences, 473846Afe Babalola University, Ado Ekiti, Nigeria
| | - A A Fafure
- Department of Anatomy, College of Medicine and Health Sciences, 473846Afe Babalola University, Ado Ekiti, Nigeria
| |
Collapse
|
7
|
Bokhan N, Roshchina O, Simutkin G, Levchuk L, Ivanova S. Anhedonia as target symptom in personalized therapy of patients with mood disorders and alcohol use disorder comorbidity. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:92-97. [DOI: 10.17116/jnevro202212203192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
MORPHOLOGY AND FUNCTIONAL STATE OF THE RAT PINEAL GLAND IN CHRONIC ETHANOL INTOXICATION. WORLD OF MEDICINE AND BIOLOGY 2022. [DOI: 10.26724/2079-8334-2022-1-79-223-227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Sunyer-Figueres M, Mas A, Beltran G, Torija MJ. Protective Effects of Melatonin on Saccharomyces cerevisiae under Ethanol Stress. Antioxidants (Basel) 2021; 10:antiox10111735. [PMID: 34829606 PMCID: PMC8615028 DOI: 10.3390/antiox10111735] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023] Open
Abstract
During alcoholic fermentation, Saccharomyces cerevisiae is subjected to several stresses, among which ethanol is of capital importance. Melatonin, a bioactive molecule synthesized by yeast during alcoholic fermentation, has an antioxidant role and is proposed to contribute to counteracting fermentation-associated stresses. The aim of this study was to unravel the protective effect of melatonin on yeast cells subjected to ethanol stress. For that purpose, the effect of ethanol concentrations (6 to 12%) on a wine strain and a lab strain of S. cerevisiae was evaluated, monitoring the viability, growth capacity, mortality, and several indicators of oxidative stress over time, such as reactive oxygen species (ROS) accumulation, lipid peroxidation, and the activity of catalase and superoxide dismutase enzymes. In general, ethanol exposure reduced the cell growth of S. cerevisiae and increased mortality, ROS accumulation, lipid peroxidation and antioxidant enzyme activity. Melatonin supplementation softened the effect of ethanol, enhancing cell growth and decreasing oxidative damage by lowering ROS accumulation, lipid peroxidation, and antioxidant enzyme activities. However, the effects of melatonin were dependent on strain, melatonin concentration, and growth phase. The results of this study indicate that melatonin has a protective role against mild ethanol stress, mainly by reducing the oxidative stress triggered by this alcohol.
Collapse
|
10
|
Ivanov D, Mironova E, Polyakova V, Evsyukova I, Osetrov M, Kvetnoy I, Nasyrov R. Sudden infant death syndrome: Melatonin, serotonin, and CD34 factor as possible diagnostic markers and prophylactic targets. PLoS One 2021; 16:e0256197. [PMID: 34506527 PMCID: PMC8432873 DOI: 10.1371/journal.pone.0256197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 07/11/2021] [Indexed: 12/20/2022] Open
Abstract
Sudden infant death syndrome (SIDS) is one of the primary causes of death of infants in the first year of life. According to the WHO's data, the global infant mortality rate is 0.64-2 per 1,000 live-born children. Molecular and cellular aspects of SIDS development have not been identified so far. The purpose of this paper is to verify and analyze the expression of melatonin 1 and 2 receptors, serotonin (as a melatonin precursor), and CD34 molecules (as hematopoietic and endothelial markers of cardiovascular damage) in the medulla, heart, and aorta in infants who died from SIDS. An immunohistochemical method was used to investigate samples of medulla, heart, and aorta tissues of infants 3 to 9 months of age who died from SIDS. The control group included children who died from accidents. It has been shown that the expression of melatonin receptors as well as serotonin and CD34 angiogenesis markers in tissues of the medulla, heart, and aorta of infants who died from SIDS is statistically lower as compared with their expression in the same tissues in children who died from accidents. The obtained data help to clarify in detail the role of melatonin and such signaling molecules as serotonin and CD34 in SIDS pathogenesis, which can open new prospects for devising novel methods for predictive diagnosis of development and targeted prophylaxis of SIDS.
Collapse
Affiliation(s)
- Dmitry Ivanov
- Saint-Petersburg State Pediatric Medical University, St. Petersburg, Russian Federation
| | - Ekaterina Mironova
- Saint Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, Russian Federation
- Saint-Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russian Federation
| | - Victoria Polyakova
- Saint-Petersburg State Pediatric Medical University, St. Petersburg, Russian Federation
| | - Inna Evsyukova
- Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russian Federation
| | - Michail Osetrov
- Saint-Petersburg State Pediatric Medical University, St. Petersburg, Russian Federation
| | - Igor Kvetnoy
- Saint-Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russian Federation
- Saint-Petersburg State University, University Embankment, St. Petersburg, Russian Federation
| | - Ruslan Nasyrov
- Saint-Petersburg State Pediatric Medical University, St. Petersburg, Russian Federation
| |
Collapse
|
11
|
Abstract
Epigenetics has enriched human disease studies by adding new interpretations to disease features that cannot be explained by genetic and environmental factors. However, identifying causal mechanisms of epigenetic origin has been challenging. New opportunities have risen from recent findings in intra-individual and cyclical epigenetic variation, which includes circadian epigenetic oscillations. Cytosine modifications display deterministic temporal rhythms, which may drive ageing and complex disease. Temporality in the epigenome, or the 'chrono' dimension, may help the integration of epigenetic, environmental and genetic disease studies, and reconcile several disparities stemming from the arbitrarily delimited research fields. The ultimate goal of chrono-epigenetics is to predict disease risk, age of onset and disease dynamics from within individual-specific temporal dynamics of epigenomes.
Collapse
|
12
|
Kurhaluk N, Tkachenko H, Lukash O. Photoperiod-induced alterations in biomarkers of oxidative stress and biochemical pathways in rats of different ages: Focus on individual physiological reactivity. Chronobiol Int 2021; 38:1673-1691. [PMID: 34121553 DOI: 10.1080/07420528.2021.1939364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Effects of photoperiodicity caused by both the age and individual physiological reactivity estimated by resistance to hypobaric hypoxia on the levels of lipid peroxidation, protein oxidation (aldehydic and ketonic derivatives), total antioxidant capacity, activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase), and biochemical parameters of aerobic and anaerobic pathways in hepatic tissue depending on the blood melatonin level were studied. The study was carried out on 96 6- and 21-month-old male rats divided into hypoxia resistance groups (LR, low resistance, HR, high resistance). The analyses were conducted at four photoperiods: winter (January), spring (March), summer (July), and autumn (October). Our results indicate a significant effect of melatonin, i.e. over 80%, revealed by the complete statistical model of the studied biomarkers of oxidative stress and oxygen-dependent parameters of metabolism. The effects of melatonin vary with age and between photoperiods, which in turn was determined by individual physiological reactivity. In terms of the photoperiods, the melatonin content in the group of the adult animals with low resistance to hypoxia decreased from winter to summer. In a group of old animals in comparison with adults, the melatonin content in all the studied photoperiods was much lower as well, regardless of their hypoxia resistance. In the group of old animals with low resistance to hypoxia, the melatonin content decreased throughout the photoperiods as follows: winter, autumn, summer, and spring. As can be concluded, spring is a critical period for old animals, particularly those with low hypoxia resistance. The important role of melatonin in these processes was also confirmed by our correlation analysis between oxidative stress biomarkers, energy-related metabolites, and antioxidant enzymes in the hepatic tissue of rats of different ages, with different resistance to hypoxia, and in different photoperiods. The melatonin concentration in the blood of highly resistant rats was higher than in those with low resistance to hypoxia. Melatonin determines the individual constitutional level of resistance to hypoxia and is responsible for individual enzymatic antioxidative responses, depending on the four photoperiods. Our studies have shown that melatonin levels are related to the redox characteristics of antioxidant defenses against lipid peroxidation and oxidative modification of proteins in old rats with low resistance to hypoxia, compared to a group of highly resistant adults. Finally, the melatonin-related mechanisms of antioxidative protection depend on metabolic processes in hepatic tissue and exhibit photoperiodical variability in adult and old rats.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Zoology and Animal Physiology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Halyna Tkachenko
- Department of Zoology and Animal Physiology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Oleksandr Lukash
- Department of Ecology and Nature Protection, T.G. Shevchenko National University "Chernihiv Collegium", Chernihiv, Ukraine
| |
Collapse
|
13
|
Abstract
Investigation of the pathogenesis of alcoholism in humans using different methodological approaches has facilitated detection of important biological factors of consequent metabolic diseases, endocrine disorders, and other medical conditions, such as alcoholic cardiomyopathy, alcoholic hypertension, heart and vascular lesions, alcoholic liver disease, alcoholic pancreatitis, etc. Alcohol abuse leads to damage to the nervous system, which can result in neurological and mental disorders, including alcoholic polyneuropathy, psychosis, and alcohol dementia. The complexity and versatility of the harmful effects of regular alcohol consumption on the human body can be considered in the perspective of a chronobiological approach, because alcohol is chronotoxic to biological processes. As a rhythm regulator, melatonin exerts a wide range of different effects: circadian rhythm regulation, thermoregulation, sleep induction, antioxidant, immunomodulatory, and anti-stress ones. This review presents from a chronobiological perspective the impact of melatonin on alcohol intoxication in terms of mental disorders, sleep and inflammation, hepatic injury, and mitochondrial function. It discusses the main clinical effects of melatonin on alcohol injury and the main targets as a therapy for alcohol disorders. Chronobiological effects of ethanol are related to melatonin suppression that has been associated with, among others, cancer risk. Exogenous melatonin seems to be a promising hepato- and immune-protector due to its antioxidant and anti-inflammatory properties, which in combination with other medicines makes it useful to prevent alcoholic organ damage. The reason for the scientific interest in melatonin as a treatment for alcoholism is obvious; the number of cases of this pathology that gives rise to metabolic syndrome, and its subsequent transformation into steatohepatitis, liver fibrosis, and cirrhosis, is increasing worldwide. Melatonin not only exerts antioxidant effects but it exerts various other effects contributing to the management of liver conditions. This review discusses the interaction between normal and pathological processes caused by alcohol consumption and the relationship between alcohol and melatonin in these conditions.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Science, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|
14
|
Fucito LM, Ash GI, DeMartini KS, Pittman B, Barnett NP, Li CSR, Redeker NS, O'Malley SS. A Multimodal Mobile Sleep Intervention for Young Adults Engaged in Risky Drinking: Protocol for a Randomized Controlled Trial. JMIR Res Protoc 2021; 10:e26557. [PMID: 33635276 PMCID: PMC7954653 DOI: 10.2196/26557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/04/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Background This paper describes the research protocol for a randomized controlled trial of a multimodal mobile sleep intervention for heavy-drinking young adults. Young adults report the highest rates of heavy, risky alcohol consumption and are a priority population for alcohol prevention and intervention efforts. Alcohol strategies that leverage other health concerns and use technology may offer an innovative solution. Poor sleep is common among young adults and is a risk factor for developing an alcohol use disorder. Moreover, young adults are interested in information to help them sleep better, and behavioral sleep interventions address alcohol use as a standard practice. Objective The primary aim of this study is to assess the effectiveness of a 2-week multimodal mobile sleep intervention for reducing drinks consumed per week among heavy-drinking young adults. We will explore the effects on alcohol-related consequences, assessing quantitative and qualitative sleep characteristics as secondary aims. The study’s goals are to identify the optimal combination of sleep intervention components for improving drinking outcomes, the feasibility and acceptability of these components, and the potential mechanisms by which these components may promote alcohol behavior change. Methods Young adults (aged 18-25 years) who report recent heavy drinking will be randomly assigned to one of three conditions: mobile sleep hygiene advice (n=30), mobile sleep hygiene advice and sleep and alcohol diary self-monitoring (n=30), or mobile sleep hygiene advice, sleep and alcohol diary self-monitoring, and sleep and alcohol data feedback (n=60). For the feedback component, participants will complete two web-based sessions with a health coach during which they will receive summaries of their sleep and alcohol data, and the potential association between them along with brief advice tailored to their data. All participants will wear sleep and alcohol biosensors daily for 2 weeks for objective assessments of these outcomes. Results The study was funded by the National Institutes of Health in May 2018. Recruitment began in December 2018 and will be concluded in Spring 2021. As of February 4, 2021, we have enrolled 110 participants. Conclusions Ultimately, this research could result in an efficacious, low-cost intervention with broad population reach through the use of technology. In addition, this intervention may substantially impact public health by reducing alcohol use disorder risk at a crucial developmental stage. Trial Registration ClinicalTrials.gov NCT03658954; https://clinicaltrials.gov/ct2/show/NCT03658954 International Registered Report Identifier (IRRID) DERR1-10.2196/26557
Collapse
Affiliation(s)
- Lisa M Fucito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.,Yale Cancer Center, New Haven, CT, United States.,Smilow Cancer Hospital, Yale-New Haven Hospital, New Haven, CT, United States
| | - Garrett I Ash
- Pain, Research, Informatics, Medical Comorbidities and Education Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States.,Yale University School of Public Health, New Haven, CT, United States
| | - Kelly S DeMartini
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Brian Pittman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Nancy P Barnett
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, United States
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Nancy S Redeker
- Yale University School of Nursing, Orange, CT, United States
| | - Stephanie S O'Malley
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
15
|
Wang W, Gao J. Effects of melatonin on protecting against lung injury (Review). Exp Ther Med 2021; 21:228. [PMID: 33603837 DOI: 10.3892/etm.2021.9659] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
Melatonin (MT; N-acetyl-5-methoxy-tryptamine), which has multiple effects and roles, is secreted from the pineal gland at night according to the daily rhythm. In addition to circadian regulation, MT has anti-inflammatory, antioxidant and anticancer functions. Recent studies postulated that MT serves a critical role in apoptosis, anti-ischemic reperfusion injury and anti-proliferative effects on various cells. The current review reported on the underlying mechanism behind the protective effect of MT on lung diseases, such as acute lung injury, acute respiratory distress syndrome, chronic obstructive pulmonary disease, lung ischemia-reperfusion injury, sepsis-induced lung injury and ventilator-induced lung injury. MT is considered an adjuvant with therapeutic drugs for preventing inflammation and is responsible for regulating patient sleep cycles in the intensive care unit. The current review described the anti-inflammatory and antioxidant efficiency of MT with a focus on the molecular mechanisms of action in various lung injuries.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Ju Gao
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
16
|
Kurhaluk N, Tkachenko H, Lukash O. Melatonin modulates oxidative phosphorylation, hepatic and kidney autophagy-caused subclinical endotoxemia and acute ethanol-induced oxidative stress. Chronobiol Int 2020; 37:1709-1724. [DOI: 10.1080/07420528.2020.1830792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Natalia Kurhaluk
- Department of Zoology and Animal Physiology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Halyna Tkachenko
- Department of Zoology and Animal Physiology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Oleksandr Lukash
- Department of Ecology and Nature Protection, T.G. Shevchenko National University “Chernihiv Collegium”, Chernihiv, Ukraine
| |
Collapse
|