1
|
Bharatha M, Nandana MB, Praveen R, Nayaka S, Velmurugan D, Vishwanath BS, Rajaiah R. Unconjugated bilirubin and its derivative ameliorate IMQ-induced psoriasis-like skin inflammation in mice by inhibiting MMP9 and MAPK pathway. Int Immunopharmacol 2024; 130:111679. [PMID: 38377853 DOI: 10.1016/j.intimp.2024.111679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Psoriasis is a chronic immune-mediated inflammatory skin disease that involves dysregulated proliferation of keratinocytes. Psoriatic skin lesions are characterized by redness, thickness, and scaling. The interleukin axis of IL-23/IL-17 is critically involved in the development of human psoriasis. Imiquimod (IMQ), an agonist of TLR7 is known to induce psoriatic-like skin inflammation in mice. The topical application of IMQ induces systemic inflammation with increased proinflammatory cytokines in serum and secondary lymphoid organs. Further, matrix metalloproteases (MMPs) have been implicated in the pathophysiology of psoriatic-like skin inflammation. The increased MMP9 activity and gene expression of proinflammatory cytokines in IMQ-induced psoriatic skin is mediated by the activation of the MAPK pathway. Moreover, the increased expression of neutrophil-specific chemokines confirmed the infiltration of neutrophils at the site of psoriatic skin inflammation. In contrast, expression of IL-10, an anti-inflammatory cytokine gene expression is reduced in IMQ-treated mice skin. Topical application of unconjugated bilirubin (UCB) and its derivative dimethyl ester of bilirubin (BD1) on IMQ-induced psoriatic mice skin significantly mitigated the symptoms of psoriasis by inhibiting the activity of MMP9. Further, UCB and BD1 reduced neutrophil infiltration as evidenced by decreased myeloperoxidase (MPO) activity and reduced gene expression of proinflammatory cytokines, and neutrophil-specific chemokines. Apart from these modulations UCB and BD1 reduced MAPK phosphorylation and upregulated anti-inflammatory cytokines. To conclude, UCB and BD1 immunomodulated the psoriatic skin inflammation induced by IMQ in mice by inhibiting neutrophil mediated MMP9, decreased proinflammatory cytokines gene expression and modulating the MAPK pathway.
Collapse
Affiliation(s)
- Madeva Bharatha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India
| | - Manuganahalli B Nandana
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India
| | - Raju Praveen
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India
| | - Spandan Nayaka
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India
| | - Devadasan Velmurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| | - Bannikuppe S Vishwanath
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India.
| | - Rajesh Rajaiah
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India.
| |
Collapse
|
2
|
Springall R, Ortega-Springall MF, Guerrero-Ponce AE, Vega-Memije ME, Amezcua-Guerra LM. Interleukin-17 and Tumor Necrosis Factor Show a Functional Hierarchy to Regulate the Production of Matrix Metalloproteases by Monocytes from Patients with Psoriasis. J Interferon Cytokine Res 2023; 43:140-146. [PMID: 36939813 DOI: 10.1089/jir.2022.0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Interleukin-17 (IL-17) and tumor necrosis factor (TNF) regulate tissue remodeling through matrix metalloproteinases (MMPs). It is not yet clear whether these cytokines have a functional hierarchy in psoriasis. Serum levels of TNF (1,403 versus 1,058 pg/mL), IL-17 (1,528 versus 820 pg/mL), MMP-1 (1,999 versus 1,039 pg/mL), and MMP-9 (1,950 versus 1,561 pg/mL) were higher in psoriasis subjects (n = 60) than in control subjects (n = 60). Tissue inhibitor of MMPs (TIMP-1; 1,374 versus 1,218 pg/mL) was lower in psoriasis subjects. Serum IL-17 was correlated with MMP-2 (rs = 0.40) and TIMP-1 (rs = -0.26) levels. Unstimulated production of MMP-1, MMP-2, and MMP-9 by monocytes was higher in psoriasis subjects, whereas TIMP-1 production was lower. TNF stimulation increased all MMPs, whereas TIMP-1 production was unchanged. IL-17 stimulation increased all MMPs, whereas TIMP-1 production was decreased in psoriasis subjects. MMP-9 production was higher in monocytes stimulated with IL-17 compared with TNF. TIMP-1 production was decreased more by IL-17 than by TNF, but only in psoriasis cells. MMP-1/TIMP-1, MMP-2/TIMP-1, and MMP-9/TIMP-1 ratios were higher after IL-17 stimulation (compared with TNF stimulation) in psoriasis subjects; this occurred in controls only for the MMP-2/TIMP-1 ratio. IL-17 has a greater ability than TNF to dysregulate the MMPs/TIMP-1 balance, supporting IL-17 blockade as first-line treatment in cutaneous psoriasis.
Collapse
Affiliation(s)
- Rashidi Springall
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | | | | | - Luis M Amezcua-Guerra
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
- Department of Health Care, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| |
Collapse
|
3
|
Wang PW, Lin TY, Yang PM, Fang JY, Li WT, Pan TL. Therapeutic efficacy of Scutellaria baicalensis Georgi against psoriasis-like lesions via regulating the responses of keratinocyte and macrophage. Biomed Pharmacother 2022; 155:113798. [DOI: 10.1016/j.biopha.2022.113798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/23/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022] Open
|
4
|
Mechanism of Huoluo Xiaoling Dan in the Treatment of Psoriasis Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7053613. [PMID: 35265149 PMCID: PMC8898804 DOI: 10.1155/2022/7053613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 01/09/2023]
Abstract
Objective To explore the mechanism of the action of Huoluo Xiaoling Dan (HLXLD) in the treatment of psoriasis based on network pharmacology and molecular docking. Methods The main active components and targets of HLXLD were collected from CMSP, and the targets related to psoriasis were collected from GeneCards, OMIM, TTD, DisGeNET, and DrugBank. Drug disease target genes were obtained by Venny tools, drug-component-target networks were constructed and analyzed, and pathway enrichment analysis was performed. AutoDockTools is used to connect the core components and the target, and PyMOL software is used to visualize the results. Results 126 active components (such as quercetin, luteolin, tanshinone IIA, dihydrotanshinlactone, and beta-sitosterol) and 238 targets of HLXLD were screened out. 1,293 targets of psoriasis were obtained, and 123 drug-disease targets were identified. Key targets included AKT1, TNF, IL6, TP53, VEGFA, JUN, CASP3, IL1B, STAT3, PTGS2, HIF1A, EGF, MYC, EGFR, MMP9, and PPARG. Enrichment analysis showed that 735 GO analysis and 85 KEGG pathways were mainly involved in biological processes such as response to the drug, inflammatory response, gene expression, and cell proliferation and apoptosis, as well as signal pathways such as cancer, TNF, HIF-1, and T cell receptor. Molecular docking showed that there was strong binding activity between the active ingredient and the target protein. Conclusions HLXLD could treat psoriasis through multicomponents, multitargets, and multipathways, which provides a new theoretical basis for further basic research and clinical application.
Collapse
|
5
|
Wagner MFMG, Theodoro TR, Filho CDASM, Oyafuso LKM, Pinhal MAS. Extracellular matrix alterations in the skin of patients affected by psoriasis. BMC Mol Cell Biol 2021; 22:55. [PMID: 34715781 PMCID: PMC8555298 DOI: 10.1186/s12860-021-00395-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 10/15/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory disease dependent upon a complex interaction between genetic predisposition and immunological factors. It is characterized by skin lesions throughout the body, causing great morbidity and affecting life quality. The present study aimed to evaluate the protein and mRNA expression of heparanase-1 (HPSE), heparanase-2 (HPSE2), syndecan-1 (SYND1), metalloproteinases (MMP2, MMP9), and tissue inhibitor metalloproteinases 2 (TIMP2) in skin samples. METHODS From each psoriasis patient, two samples were collected, one sample from a psoriasis plaque (n = 23) and the other sample from non-affected skin (n = 23), as well as tissue collected by blepharoplasty from control individuals (n = 18). Protein expression was investigated by immunohistochemistry, followed by digital quantification. Quantitative RT-PCR obtained mRNA expression. Statistical analyses were done, and p values < 0.05 were considered significant. RESULTS A significant increase in protein and mRNA expression was observed in both heparanases (HPSE and HPSE2), and higher protein levels of MMP9 and TIMP2 were observed in the psoriasis plaque compared to the non-affected skin. The data point to a probable activation of MMP2 by TIMP2. Moreover, there was a significant increase in HPSE2, SYND1, MMP9, and TIMP2 in non-affected skin samples from patients with psoriasis than in the control sample (tissue obtained by individuals who do not have psoriasis). CONCLUSIONS These results show a possible correlation between the characteristic inflammatory process and alterations in the expression of the extracellular matrix in psoriasis. The increased expression of HPSE2, SYND1, MMP9, and TIMP2, even in the absence of psoriatic plaque, indicates that these molecules may be involved with extracellular matrix changes in the initial alterations the psoriatic process and may be candidates for the development of target treatments.
Collapse
Affiliation(s)
| | - Thérèse Rachell Theodoro
- Biochemistry Department of Centro Universitário Saúde ABC (FMABC), Avenida Lauro Gomes 2000, Santo André, São Paulo, CEP 09060870, Brazil
| | | | | | - Maria Aparecida Silva Pinhal
- Biochemistry Department of Centro Universitário Saúde ABC (FMABC), Avenida Lauro Gomes 2000, Santo André, São Paulo, CEP 09060870, Brazil.
| |
Collapse
|
6
|
Assessment of Selected Matrix Metalloproteinases (MMPs) and Correlation with Cytokines in Psoriatic Patients. Mediators Inflamm 2021; 2021:9913798. [PMID: 34305455 PMCID: PMC8263227 DOI: 10.1155/2021/9913798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
Metalloproteinases (MMPs) and cytokines have a great impact on the pathogenesis of psoriasis. Cytokines, as key mediators of inflammation and autoimmune processes, play a crucial role in the regulation of MMP expression in different cell types. Parallel, MMPs have an influence on cytokine production. This interaction was not well recognized in psoriatic patients. Our study is aimed at assessing the selected serum MMP levels and their correlations with cytokine levels in the serum of psoriatic patients. We observed a significantly elevated level of pro-MMP-1 and MMP-9 in psoriatic patients' serum in comparison to the control group. We did not observe any statistically significant differences of MMP-3 and pro-MMP-10 between the psoriatic patients and the control group. We did not observe any statistically significant differences in all the studied MMP levels between the patients with and without psoriatic arthritis (PsA). MMP-3 level correlated positively with proinflammatory cytokines, i.e., IL-12p/70, IL-17A, and TNF-α as well as MMP-3 and pro MMP-1 correlated positively with IL-4 in the psoriatic patients. In the control group, a positive correlation between pro-MMP-1 and TNF-α was found. These results confirm MMPs and Th1 and Th17 cytokine interaction in the inflammatory regulation in psoriasis.
Collapse
|
7
|
Combination of retinoids and narrow-band ultraviolet B inhibits matrix metalloproteinase 13 expression in HaCaT keratinocytes and a mouse model of psoriasis. Sci Rep 2021; 11:13328. [PMID: 34172768 PMCID: PMC8233442 DOI: 10.1038/s41598-021-92599-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/14/2021] [Indexed: 12/02/2022] Open
Abstract
Matrix metalloproteinase13 (MMP13) can be released by keratinocytes and fibroblasts and involved in the pathogenesis of skin disorders. Retinoic acid derivative drugs include tazarotene and acitretin. Tazarotene/acitretin and narrow-band ultraviolet B (NB-UVB) irradiation are common treatment options for psoriasis. However, their impact on MMP13 expression in the context of psoriasis has yet to be determined. The expression of MMP13 was analyzed in patients with psoriasis. The effects of tazarotene/acitretin and NB-UVB on MMP13 expression were also investigated in a mouse model of psoriasis. Human HaCaT keratinocytes were exposed to acitretin or NB-UVB and then assayed for cell proliferation and MMP13 expression levels. We showed that patients with psoriasis had increased levels of MMP13 protein in skin lesions and serum samples. Exposure to acitretin and NB-UVB irradiation alone or in combination led to reduction of cell proliferation and MMP13 expression in HaCaT cells. Consistently, tazarotene treatment or NB-UVB irradiation attenuated imiquimod-induced psoriasis-like dermatitis and decreased MMP13 expression in a mouse model. Based on these from HaCaT keratinocytes cells and animal experiments, we suggest that tazarotene/acitretin and NB-UVB irradiation can inhibit the expression of MMP13 in HaCaT keratinocytes and psoriasis mouse models. Blockade of MMP13 activity may have therapeutic potential in improving symptoms of psoriasis.
Collapse
|
8
|
Chen J, Zhu Z, Li Q, Lin Y, Dang E, Meng H, Sha N, Bai H, Wang G, An S, Shao S. Neutrophils Enhance Cutaneous Vascular Dilation and Permeability to Aggravate Psoriasis by Releasing Matrix Metallopeptidase 9. J Invest Dermatol 2020; 141:787-799. [PMID: 32888954 DOI: 10.1016/j.jid.2020.07.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/07/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Neutrophil infiltration and papillary vessel dilation are hallmarks of the initiation phase of psoriatic lesions. However, how neutrophils aggravate psoriasis development during transendothelial migration and the interaction between neutrophils and cutaneous vascular endothelial cells are less well-understood. In this study, we reported that neutrophils and cutaneous vascular endothelial cells activated each other when neutrophils migrated through the cutaneous endothelial barrier. In addition, neutrophil infiltration into skin lesions caused vascular remodeling including cutaneous vasodilation and enhanced vascular permeability in vivo and in vitro. Microarray gene profile data showed that matrix metallopeptidase (MMP)-9 was overexpressed in psoriatic neutrophils, and zymography assay further validated the bioactivity of MMP-9 secreted by psoriatic neutrophils. Moreover, MMP-9 activated vascular endothelial cells through the extracellular signal‒regulated kinase 1/2 and p38-MAPK signaling pathways, enhancing CD4+ T-cell transmigration in vitro. Correspondingly, an MMP-9 inhibitor significantly reduced cutaneous vasodilation, vascular permeability, and psoriatic symptoms in an imiquimod- or IL-23‒induced psoriasiform mouse model. Overall, our study demonstrates that neutrophil-derived MMP-9 induces cutaneous vasodilation and hyperpermeability by activating cutaneous vascular endothelial cells, thus facilitating psoriatic lesion development, which increases our knowledge on the role of neutrophils in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenlai Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qingyang Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yiting Lin
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Meng
- Department of General Diagnosis and Treatment, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Nanxi Sha
- Department of General Diagnosis and Treatment, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Bai
- Department of General Diagnosis and Treatment, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shujie An
- Department of General Diagnosis and Treatment, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|